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Hotter years are associated with lower economic output in country-level data. We

show that the effect of temperature on labor is an important part of the explanation.

Using high-frequency micro data from selected firms in India, we find that worker

productivity on hot days declines by 2 to 4 percent per degree celsius. Sustained
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plants, we find similar temperature effects on output and show that these can be
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sizes are consistent with studies that rely on country GDP panels.
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1 Introduction

Recent research has uncovered a negative relation between temperature and aggregate na-

tional output, especially in developing countries. High temperatures have been shown to

reduce crop yields and also appear to lower output in non-agricultural sectors.1 Explana-

tions for this relationship include heat stress on workers and temperature-related increases

in mortality, conflict, and natural disasters.2 Establishing and quantifying the relative im-

portance of these mechanisms is crucial for identifying possibilities of adapting to a hotter

world.

In this paper, we use data from India at different levels of aggregation to quantify the

extent to which high temperatures affect output through reductions in the productivity of

labor. There are two channels through which temperature might affect workers. They may

produce less while at work and also be absent more often. We separately identify both of

these effects using data on individual workers from selected firms in three industries: cloth

weaving, garment sewing, and steel infrastructural products. We find that productivity drops

by 2 to 4 percent per degree celsius on a hot day. Hot spells increase absenteeism among

salaried workers but not those with piece rate contracts. Climate control in the workplace

mitigates contemporaneous productivity declines but not absenteeism.

After estimating these effects, we examine how temperature influences factory output using

a 15-year nationally representative panel of manufacturing plants. We find that the value

of output declines in years with more hot days and that changes in the output elasticity

of labor, in response to high temperatures, can entirely account for this effect. We also

use manufacturing sector GDP for Indian districts for the period between 1998 and 2009 to

directly estimate the impact of temperature on district output. We find that annual output

1For evidence on yields, see Mendelsohn and Dinar (1999), Auffhammer, Ramanathan, and Vincent
(2006), Schlenker and Roberts (2009) and Lobell, Schlenker, and Costa-Roberts (2011).

2Hsiang (2010) discusses heat stress, Hsiang, Burke, and Miguel (2013) identify a temperature-conflict
relationship and Burgess et al. (2011) study effects on mortality.
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declines by about 3 percent per degree celsius. This effect size closely matches predictions

using our plant data and is comparable to existing country-level estimates of the response of

contemporaneous manufacturing GDP to high temperatures (Dell, Jones, and Olken, 2012;

Burke, Hsiang, and Miguel, 2015).

Notwithstanding the magnitude of these temperature effects, adaptation through climate

control does not always occur. For example, the cloth-weaving firms we study are labor-

intensive but do not use climate control. Given the costs of electricity, value added per worker

may be too low to justify these investments. In the garment firms, value addition by workers

is greater and we see more climate control. We also use a survey of 150 diamond cutting plants

to study adaptation investments within plants and we find that air-conditioning is selectively

used in processes which are both labor intensive and critical in determining diamond quality.

Turning to our national plant panel, although we do not have direct information on the use

of climate control, we find that temperature effects on output fall slightly over time, possibly

the result of investments in adaptation.

After presenting our main results, we consider two alternatives to heat stress as an expla-

nation for the effect of temperature on labor productivity: natural disasters and conflict.

For the years covered by our plant panel, we collect data on workdays lost in all recorded

industrial disputes as well as all instances of flooding. We find that these variables have no

additional explanatory power when incorporated in our empirical models.

The paper is organized as follows. Section 2 summarizes the physiological evidence on heat

stress. Section 3 describes our data sources. Our main results are in Section 4. In Section 5

we compare effect sizes from our worker, plant, and district level data and show that these are

of similar magnitudes and consistent with country-level estimates in the literature. Section

6 examines the adoption of climate control investments within firms. Section 7 discusses

alternative explanations and the robustness of our main results. Section 8 concludes.
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2 Mechanisms

The physics of how temperature affects human beings is straightforward. Heat generated

while working must be dissipated to maintain body temperatures and avoid heat stress. The

efficiency with which this happens depends primarily on ambient temperature but also on

humidity and wind speed. If body temperatures cannot be maintained at a given activity

level, it may be necessary to reduce the intensity of work (Kjellstrom, Holmer, and Lemke,

2009; Iso, 1989). Several indices of ambient weather parameters have been used to measure

the risk of heat stress. Most widely accepted is the Wet Bulb Temperature or WBT (Parsons,

1993; Iso, 1989). The measurement of WBT requires specialized instruments but it can be

approximated by combining temperature and relative humidity. We use a formula provided

by Lemke and Kjellstrom (2012):

WBT = 0:567TA + 0:216�+ 3:38 (1)

where TA is air temperature in degrees celsius and � is water vapour pressure which is

calculated from relative humidity, RH as follows:

� = (RH=100)× 6:105 exp

�
17:27TA

237:7 + TA

�

Exposure to high ambient temperatures can reduce physical productivity and also affect our

willingness and ability to go to work. There have been a number of studies on temperature

and productivity. Mackworth (1946) conducted an early artefactual field experiment with

wireless telegraph operators and found that they made more mistakes at high temperatures.

Parsons (1993) and Seppanen, Fisk, and Faulkner (2003) summarize important findings in

this area. Hsiang (2010) presents a meta analysis of recent laboratory evidence which shows

that once wet bulb temperatures rise above 25 degrees celsius, task efficiency appears to fall

3



Working Paper

by approximately 1 to 2 percent per degree. A WBT of 25 degrees at 65 percent relative

humidity is roughly equivalent to a temperature of 31 degrees celsius in dry conditions.

These temperatures are not considered unsafe from the point of view of occupational safety

and commonly occur in many developing countries.3

Controlled experiments in the laboratory or workplace provide a useful benchmark but do

not fully capture real manufacturing environments. Workers and management generally op-

erate well within physical limits and have room to increase effort in response to incentives.

The output-temperature relationship therefore depends on the physical as well as behavioral

aspects of employment such as the wage contract, particularities of production, management

techniques, and mechanization. This makes data from non-experimental settings partic-

ularly valuable. As early as 1915, Huntington exploited daily variations in temperatures

experienced by workers and students performing various tasks and found that high temper-

atures appeared to reduce output (Huntington, 1915).4 More recently, Adhvaryu, Kala, and

Nyshadham (2014) exploit variation in workplace temperatures induced by low-heat LED

lighting and conclude that worker productivity increases when temperatures are reduced.

On absenteeism, there is much less evidence. Zivin and Neidell (2014) study time allocated

between outdoor and indoor activities in response to extreme temperatures in the United

States. Their unit of analysis is the individual rather than the plant, so they do not estimate

the effect of these changes on labor supply within firms. Our data allows us to go further as

we are able to directly estimate changes in total worker absences, within firms, in response

to high temperatures.

3Temperature exposure in sectors such as mining can be high enough to create serious health hazards.
These settings have long been used for research on heat stress and occupational safety (Wyndham, 1969).

4We are grateful to an anonymous reviewer for pointing us to some of this literature.
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3 Data Sources

Our labor and output data are at three levels of aggregation: the worker or team, the

plant, and the district. For each data set, described below, we match output to measures

of temperature. In addition, we use a survey of diamond firms to study the selective use

of climate control. Official data in India is typically available for financial years, which run

from April 01 through March 31. When referencing such a financial year, we use the initial

calendar year.

3.1 Worker Data

We collected data on the output and attendance of workers from selected firms in three

industries: cloth weaving, garment sewing, and the production of large infrastructural steel

products. Our three cloth-weaving factories are located in the industrial city of Surat in the

state of Gujarat, in Western India. Our garment factories are managed by a single firm, and

located in several cities in North and South India. Our steel production data are from the

rail and structural mill of a large public sector steel plant in the town of Bhilai in Central

India. Each of these micro-data sites is part of an important manufacturing sector in the

Indian and global economy. Textiles and Garments respectively employ 12 and 7 percent of

factory workers in India and the Bhilai steel mill is the largest producer of steel rails in the

world.5

Cloth Weaving: For the three cloth-weaving factories, we gathered daily data on the

meters of cloth woven and the attendance of 147 workers employed during the financial year

starting April 2012. A worker in each of these factories operates about 6 mechanized looms

5For employment shares, see Annual Survey of Industries, 2009-10, Volume 1. A description of the steel
plant at Bhilai is available from the Steel Authority of India Ltd.
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producing woven cloth.6 Workers are paid based on the meters of cloth woven by these

looms and no payments are made for days absent. Protection from heat is limited to the

use of windows and some fans. We obtained payment slips for each day and digitized these

to generate a worker level dataset of daily output and attendance. For most types of cloth,

workers were paid 2 rupees per meter and the median daily production per worker was 125

meters.7

Garment Sewing: For garment sewing, we have data from eight factories owned by a single

firm producing garments for foreign apparel brands. Six of the factories are in the National

Capital Region (NCR) around Delhi, the other two are in Hyderabad and Chhindwara in

South and Central India respectively. In each plant, production is organized in sewing lines

of 10-20 workers with each line creating part or all of a clothing item.8 Unlike in the cloth-

weaving firms described above, these workers are paid monthly wages that do not directly

penalize workers for small variations in productivity or occasional absences.

Our productivity measure relates to the entire sewing line. The garment sector is highly

competitive and firms track worker output in sophisticated ways. In our case, the firm

used an hourly production target for each line based on the time taken to complete the

desired operations by an experienced line of ‘master craftsmen’. The actual hourly output,

controlling for the target, provides a measure of the line productivity. The target is not

revised each day so it is not sensitive to daily temperatures.

The firm management provided us with daily production from 103 sewing lines for all 730

days over two calendar years, 2012 and 2013. They also gave us daily attendance records for

6Workers are engaged in monitoring looms, adjusting alignment, restarting feeds when interrupted, and
making other necessary corrections. The cloth produced is sold in wholesale markets or to dying and printing
firms. In the Appendix, Figure A.1 provides a photograph of the production floor in one of these units.

7Since payments are strictly based on production, incentive effects on output arising from non-linearities
caused by minimum wages can be ignored (Zivin and Neidell, 2012).

8Lines are usually stable in their composition of workers, although the garment manufactured by a given
line changes based on production orders. In the Appendix, Figure A.1 provides a photograph of a typical
sewing line.
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2744 workers over the same time period. To restrict attention to regular, full-time employees,

we study absenteeism within a stable cohort of 2700 workers present for at least 600 days

over our full two-year period.

These garment factories also provide us an opportunity to study the impact of climate

control investments on productivity. During the period for which we have data, the firm

was in the process of installing cooling and dehumidifying equipment on its shopfloors. This

equipment had been installed in five of the manufacturing units in the NCR before 2012 but

the sixth unit in the NCR did not have this until 2014. Two factories in Hyderabad and

Chhindwara were also without climate control, but average temperatures in these areas are

lower than in the NCR. This phased roll-out allows us to compare temperature effects for

workers in co-located factories within the same firm, assigned to shopfloors with and without

climate control. Since we observe both absenteeism and attendance we are able to separately

estimate the effects of climate control on each of these.

Steel Production: The rail and structural mill in Bhilai is the primary supplier of rails to

the Indian Railways and also produces steel products used for large infrastructural projects.9

Rectangular blocks of steel called blooms form the basic input for all these products. They

enter a furnace and are then shaped into rails or structurals to meet ordered specifications.

When a bloom is successfully shaped, it is said to have been rolled and the number of blooms

rolled in an eight-hour shift is our output measure.

There are three shifts on most days, starting at 6 a.m., and workers are assigned to one of

three teams which rotate across these shifts. The median number of workers on the factory

floor is 66. Our production data records the team and the number of blooms rolled for

each working shift during the period 1999-2008. We observe a total of 9172 shifts over 3339

working days. In addition to the team output in each shift, we also have team-level absences

9Figure A.1 provides a photograph of the shop-floor.
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over a shorter period of 857 working days between February 2000 and March 2003.10

Unlike the weaving and garment manufacture factories, the production of rails is highly

mechanized and the mill runs continuously with breaks only for repair, maintenance, and

adjustment for different products. Workers who manipulate the machinery used to shape

rails sit in air-conditioned cabins. Others perform operations on the factory floor. This is

the most capital-intensive of our case study sites and the combination of automation and

climate control mediates the effect of outside temperatures on output.

3.2 Panel of Manufacturing Plants

We purchased secondary data from the Annual Survey of Industry (ASI) covering the finan-

cial years 1998-99 to 2012-13. The ASI is a Government of India census of large plants and a

random sample of about one-fifth of smaller plants registered under the Indian Factories Act.

Large plants are defined as those employing over 100 workers.11 The ASI provides annual

data on output, value of fixed assets, debt, cash on hand, inventories, input expenditures,

and the employment of workers and management. The format is similar to census data on

manufacturing in many other countries.12

The ASI provides plant identifiers for the period 2000-2010 but not in other years. To create a

longer panel requires matching observations across different years using time-invariant plant

characteristics. Following a procedure similar to Allcott, Collard-Wexler, and O’Connell

(2014), we create an unbalanced panel of 69643 plants over 1998 to 2012.13 We match plants

to temperature and rainfall at the level of the district.14

10These data were first used by Das et al. (2013), who provide a detailed account of the production process
in the mill.

11For regions with very little manufacturing, the ASI covers all plants irrespective of their size.
12See Berman, Somanathan, and Tan (2005) for a discussion on the measurement of variables in the ASI

and its comparability with manufacturing data in other countries.
13Section A.4 in the Appendix provides details.
14There are 529 districts with at least one plant surveyed. Figure A.1 in the Appendix shows the geographic

distribution of ASI plants and locations of our micro-data sites.
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3.3 District Panel Manufacturing GDP

The Planning Commission of India has made available data on district-level manufacturing

sector GDP over a 12 year period from 1998 to 2009.15 We use these statistics to directly

estimate the effect of temperature on economic output, aggregated at the level of districts.

Unfortunately, after 2009 this information has not been systematically compiled. Data for

some districts was either not available in this dataset, or not reliable because of changes

in boundaries over this period. Kumar and Somanathan (2009) provide a review of these

boundary modifications. Therefore our estimates are based on a sub-sample of 438 districts

with static boundaries and at least 2 non-missing observations over this period.

15These figures include output from plants in the ASI panel, with appropriate weights. They also include
estimates of unregistered manufacturing and smaller factories not covered by the ASI.
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3.4 Weather Data

To identify the impacts of heat stress on output, we would like to use temperature data

from close to the workplace while also accounting for humidity. Together these allow us

to estimate the ambient wet bulb temperature, as discussed in Section 2. Ideally, if hourly

temperatures and humidity measures were also available, we could average these to estimate

the WBT experienced during working hours only. This type of information is rarely available

over long time periods and multiple locations so we approximate this ideal as best we can,

given data limitations.

Our weather data come from two sources. We use recordings from public weather stations

within the cities where our cloth-weaving and garment-sewing factories are located. We also

use a 1� × 1� gridded data product sold by the Indian Meteorological Department (IMD),

which provides daily historical temperature and rainfall measurements interpolated over the

IMD’s network of monitoring stations across the country. The first of these provides a

geographically more precise measure for locations near a weather station. The second is best

suited to averaging over space.

In the case of our worker data, we know the precise factory locations and can use public

weather stations where available. These provide daily humidity levels and allow us to esti-

mate wet bulb temperatures. Temperature highs occur during the day and are arguably the

best proxy for hot weather while at work. However, over our study period, the most prox-

imate weather stations contain a large number of missing observations for daily maximum

temperatures, especially in the NCR. Therefore we use daily mean temperatures, rather than

daily highs, to calculate a daily wet bulb temperature measure using (1).

There were no public weather stations in the proximity of the Bhilai Steel Plant over the

period for which we have data. For this plant, we rely on the IMD gridded dataset of daily

temperature and precipitation and use an inverse distance weighted average of grid points
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within 50 km of the plant to assign daily weather values.

For our annual panel of manufacturing plants we use daily maximum temperatures from the

IMD gridded datasets as well as daily precipitation. Since we do not have precise location

coordinates from the ASI, we assign to each plant the temperature and rainfall corresponding

to the district in which it is situated. These numbers are obtained by spatially averaging grid

temperatures over the geographical boundaries of each district. We describe this process in

greater detail in the Appendix.

Because we observe only annual output in our panel of manufacturing plants, we aggregate

daily temperatures thus obtained up to the annual level in two ways: A simple average of the

daily maximum temperature over the year, and a non-linear measure consisting of the number

of days in the year falling within different temperature bins. We create five bins using the

daily maximum temperature expressed in celsius, {(0; 20]; (20; 25]; (25; 30]; (30; 35]; (35; 50]}.

The vector N = (N1; N2; N3; N4; N5) specifies the number of days in each of these bins

and summarizes the temperature distribution over the year. This vector can be separately

calculated for every district and each year.

3.5 Climate control within diamond-cutting firms

In August 2014, we surveyed 150 diamond-cutting plants, randomly sampled from over 500

units formally registered with the industry association of the city of Surat (the same location

as our cloth weaving units). Each plant carries out five operations: (i) sorting and grading,

(ii) planning and marking, (iii) bruting, (iv) cutting and (v) polishing. Although these

factories are small and labor intensive, similar to the cloth-weaving plants, the value added

in production is considerable and these units commonly deploy air-conditioning in at least

some parts of the plant.
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We asked each firm about the number of workers and machines, and the use of air-conditioning

in each of the five operations. They were also asked to rate, on a scale of 1-5, the importance

of each of these processes to the quality of final output. We use these responses to study the

selective deployment of climate control.

4 Estimation and Results

4.1 Worker Productivity

Our simplest specification relates output to temperature using a piece-wise linear function

of WBT:

log(Yid) = �i + M + Y + W + �kWBTid ×Dk + �Rid + �id: (2)

Our output measure varies across the three types of firms. For cloth weaving, Yid is the

meters of cloth produced by worker i on day d. For the steel mill, it is the number of

rectangular blooms rolled in each shift i on day d. For garment plants, it is the average over

the day of the hourly output of each sewing line. In this last case we also control for the

line-specific target output set by the firm, as described in Section 3.

We include a range of fixed effects to control for idiosyncratic worker productivity and

temporal and seasonal shocks. Fixed-effects for the ith unit are denoted by �i. A unit is an

individual worker in the cloth-weaving firms, a sewing line in garment firms, and a team-shift

for the steel mill. Recall that for the steel mill, there are 3 shifts a day, and three teams of

workers rotating across shifts, producing a total of 9 indicator variables. Output responds

in part to demand, so we also include fixed-effects for each month and year (M ; Y ). Day
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of week fixed effects (W ) are included because some workers have a regular day off. Rid is

the relevant measure of rainfall.

We allow for non-linear effects of heat-stress by interacting the daily wet bulb temperature,

WBTid, with indicator variables Dk for four temperature ranges: {[0�C − 20�C), [20�C-

25�C), [25�C-27�C), [27�C − 35�C]}. We therefore estimate the marginal effect of a degree

change in WBT on output, within each of these intervals.16

Table 2 presents our estimates. Column 1 is for the steel mill. Columns 2 and 3 offer

a within-firm comparison of garment factories in the NCR with different levels of climate

control. Estimates from climate-controlled plants are shaded. Column 4 presents data from

garment factories located elsewhere in India. Column 5 is for cloth output from weaving

factories. Column 6 uses output in meters rather than logged meters for the cloth-weaving

firms. Since weaving workers are paid piece-rates, this coefficient can be used to compute

the expected loss in wages resulting from higher temperatures.

The most systematic declines in productivity are observed for the highest temperature bin.

Above 27 degrees, a one degree change in WBT is associated with productivity declines

ranging from 3.7 percent for sewing lines in the milder climate of South and Central India,

to about 8 percent for sewing lines and weaving workers in the hotter regions of Delhi and

Gujarat. For plants with climate control, we do not find systematic temperature effects on

output.

In addition to this piece-wise linear specification, we estimate a more flexible model of output

as a function of restricted cubic splines in WBT, with four knots at the 20th, 40th, 60th

and 80th percentiles of the temperature distribution at each location. Figure 1 shows the

predicted impact of temperature on output using this specification. Output at 25 degrees is

normalized to 100 percent. The pattern of these results is very similar to those in Table 2.

16We have chosen these breakpoints to facilitate a comparison of our estimates with others in the literature
(Hsiang, 2010).

14



F
ig

u
re

1:
R

es
tr

ic
te

d
cu

b
ic

sp
li

n
e

m
o
d

el
s

of
th

e
im

p
a
ct

o
f

te
m

p
er

a
tu

re
o
n

lo
g
g
ed

o
u

tp
u

t
sh

ow
n

w
it

h
9
0

p
er

ce
n
t

b
o
o
ts

tr
a
p

p
ed

co
n

fi
d

en
ce

in
te

rv
a
ls

.
T

h
e

ou
tp

u
t

at
25

d
eg

re
es

is
n

or
m

al
iz

ed
to

10
0

p
er

ce
n
t.

In
p

a
n

el
s

A
a
n

d
B

,
w

e
co

n
tr

o
l

fo
r

th
e

ta
rg

et
o
u

tp
u

ts
se

t
b
y

th
e

fi
rm

.
W

e
h

av
e

a
sm

a
ll

n
u

m
b

er
of

ad
d

it
io

n
al

ob
se

rv
at

io
n

s
fr

om
p

la
n
ts

w
it

h
ai

r-
w

a
sh

er
s,

re
la

ti
v
e

to
th

o
se

w
it

h
o
u

t
th

is
eq

u
ip

m
en

t.
T

h
is

ex
te

n
d

s
th

e
te

m
p

er
a
tu

re
ra

n
g
e

ov
er

w
h

ic
h

th
e

co
rr

es
p

on
d

in
g

sp
li

n
e

in
P

an
el

A
is

es
ti

m
at

ed
.

15



Working Paper

We see from Figure 1, Panels A and B, that the clearest evidence in support of the heat-

stress hypothesis comes from a within-firm comparison of garment sewing lines with and

without climate control. For sewing lines on shop-floors without access to climate control,

high temperatures are associated with a drop in efficiency at all locations while the NCR

factories which have climate control, show no such declines.17 In the cloth-weaving factories

(Panel C), our estimates are less precise and statistically significant only in the highest WBT

bin. For the mechanized steel mill (Panel D), the response function looks more complicated.

Even though workers sit in climate-controlled cabins, the production process involves the

heating and casting of steel which may be directly influenced by ambient temperatures. We

return to the question of interactions of capital equipment with temperature in Section 4.2.

Note that for garment lines and weaving workers, we estimate effects on output per degree

rise in wet bulb temperatures. We see from (1) that holding humidity constant, a one degree

rise in temperature corresponds to a 0.567 degree rise in wet bulb temperatures. The effects

of temperature alone, with no humidity correction, are therefore about half the estimates in

Table 2. These are comparable to estimates from other studies discussed in Section 2.

In addition to contemporaneous effects of heat exposure on output, there may also be lagged

effects. We examine these using ten-day histories of WBT. Results are in Table A.1 in the

Appendix. We find no clear evidence that temperature lags are important.

17High temperatures may affect productivity directly if they are associated with more frequent power
outages. All the factories in our dataset have a power backup, so this is unlikely to be a concern. Also,
if outages were driving our results, we should expect to see this effect in plants with and without climate
control.
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Worker Absenteeism

In the semi-tropical, low-income environments we study, sustained heat could induce fatigue

among workers and their families, resulting in time off work. We obtained detailed histories

of worker attendance for the six garment factories in the NCR and all three weaving factories.

For the steel plant, we have information on the number of daily absences in each team.

For workers in the garment and cloth-weaving sites, we estimate a linear probability model

using a specification similar to (2), with Yid now an indicator for the worker i being present

on day d. For the steel mill, we use the log of team absences as the dependent variable. The

coefficient on temperature in this case represents the percentage increase in absences within

a team rather than changes in the probability that an individual worker is absent.

As with worker productivity, we estimate models using contemporaneous WBT, and WBT

averages over the preceding ten days. Table 3 summarizes our results. In contrast with

worker productivity, absenteeism is clearly influenced by lagged temperature exposures. For

the highest WBT bin, a one degree increase in the ten-day average raises the probability of

a garment worker being absent by 10 percent and the number of team absences in the steel

mill by 2 percent. In the case of cloth-weaving workers, who are paid a piece rate, we see no

change in absenteeism.
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These initial results lead us to further explore the structure of the temperature-absenteeism

relationship. To do this, we generalize our definition of exposure and use total absences in

each of the three types of plants: garments, cloth-weaving, and steel.

We can define heat exposure on day d as:

Ed = �0Td + �1Td�1 + :::+ �KTd�K

With equal weights �i, this simplifies to the temperature average that we have already used.

More generally, weights could be a function of both temperature levels and lags:

Ed =
KX

k=1

�(T; k)Td�k (3)

This allows, for example, ten days at 30oC to result in a different response than eight days

at 28oC and two days at 38oC, even though both produce the same ten-day average.

Given an accumulated exposure level Ed, the total number of absences on day d in a popu-

lation with characteristics Xd can be modeled as:

log(Ad) = � + �Ed + Xd + �d: (4)

Gasparrini (2014) shows how this class of models can be estimated using restricted cubic

splines in temperatures and lags. One spline describes exposure as a function of temperature,

while the other describes exposure as a function of the lag. We estimate this model for each

of the three industries – garments, weaving, and steel, and then use the fitted models to

predict the percentage changes in total absences under different WBT trajectories.

Figure 2 illustrates two scenarios. The left column shows the predicted change in the log of
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daily absences for a 1�C increase in WBT over a 27�C reference, for a duration ranging from

1 to 10 days. In the right column, we plot predicted absenteeism for different temperature

levels sustained over a ten-day period.

We find that sustained high temperatures increase absenteeism for both steel and garment

workers.18 As with the simpler linear models in Table 3, effects on daily-wage weaving workers

are not systematically different from zero. In contrast to our results on worker productivity,

we find that temperature affects absenteeism even if the work-place has climate control. This

is consistent with evidence from the United States which finds that temperature influences

time-allocation and labor-leisure trade-offs (Zivin and Neidell, 2014).

We include month fixed effects in all our empirical models and our estimates therefore rep-

resent short-run temperature impacts. We do this to isolate the role of heat stress from

other mechanisms and also because the result of long-run increases in temperature cannot

be identified separately from other seasonal factors. In the Appendix, we show that there

are seasonal changes in the availability of casual workers during high temperature months

(Figure A.2).

18Absenteeism following sustained heat exposure may occur due to illness. Strokes, fatigue, and even cases
of organ damage have been directly linked to heat stress, and continued exposure may increase overall vulner-
ability (Kovats and Hajat, 2008). Other illnesses may be influenced by heat through different mechanisms,
for example, increased breeding of pathogens and disease vectors.

21



F
ig

u
re

2:
T

h
e

im
p

ac
t

of
w

et
-b

u
lb

te
m

p
er

at
u

re
o
n

a
b

se
n
te

ei
sm

.
N

a
tu

ra
l

cu
b

ic
sp

li
n
es

w
it

h
th

re
e

d
eg

re
es

o
f

fr
ee

d
o
m

sh
ow

n
w

it
h

9
0

p
er

ce
n
t

b
o
ot

st
ra

p
p

ed
co

n
fi

d
en

ce
in

te
rv

al
s.

A
ll

m
o
d

el
s

in
cl

u
d
e

co
n
tr

o
ls

fo
r

ra
in

fa
ll

a
s

w
el

l
a
s

m
o
n
th

a
n

d
d

ay
o
f

w
ee

k
fi

x
ed

eff
ec

ts
.

T
h

e
le

ft
co

lu
m

n
sh

ow
s

th
e

p
re

d
ic

te
d

ch
an

ge
in

th
e

lo
ga

ri
th

m
of

d
ai

ly
ab

se
n

ce
s

fo
r

a
1
◦ C

in
cr

ea
se

in
W

B
T

ov
er

a
2
7◦

C
re

fe
re

n
ce

,
fo

r
a

d
u

ra
ti

o
n

ra
n

g
in

g
fr

o
m

1
to

1
0

d
ay

s.
In

th
e

ri
gh

t
co

lu
m

n
,

w
e

p
lo

t
p

re
d

ic
te

d
ab

se
n
te

ei
sm

fo
r

d
iff

er
en

t
te

m
p

er
a
tu

re
le

ve
ls

su
st

a
in

ed
ov

er
a

te
n

-d
ay

p
er

io
d

.

22



Working Paper

4.2 Aggregate Plant Output

Our worker data establish that high temperatures lower productivity. We now use our panel

of manufacturing plants to examine whether there are discernible temperature effects on the

value of plant output, and whether these can be attributed to a decline in the productivity

of labor.

We begin with the following reduced-form specification:

log(Yit) = �i + t + �Tit + �Rit + �it: (5)

Yit is the value of output for plant i in year t and �i and t are plant and year fixed effects.

Tit is the average daily maximum temperature for the district in which a plant is located and

Rit is the average daily rainfall. As discussed in Section 3.4, we use temperature without

humidity corrections due to data limitations.

In our second reduced-form specification, the value of annual output depends on the distribu-

tion of temperatures over the year. Specifically, we count the number of days with maximum

temperatures falling in each of five bins: {(0; 20]; (20; 25]; (25; 30]; (30; 35]; (35; 50]} and de-

note the number in bin j by N j. These bin counts sum to 365. We then estimate:

log(Yit) = �i + t +
5X

j=2

�jN
j
it + �Rit + �it: (6)

N1 is the omitted bin in this specification and results from both (5) and (6) are reported in

Table 4.19 A 1�C increase in the average maximum temperature results in a 3.2% decrease

in output. Coefficients from (6) are best interpreted using specific counter-factual scenarios,

19We use robust standard errors clustered at the district level to account for spatial and serial correlation.
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because changes in the temperature distribution can affect all bins. To illustrate, these

estimates imply that a shift of 10 days from the fourth to the fifth bin leads to a 0.3 percent

decline in the value of output.

To study sector-specific temperature effects, we modify (5) by interacting average temper-

ature with an indicator for each 2-digit manufacturing sector.20 Figure 3 shows sector-wise

mean estimates and confidence intervals. Output is lower in a hotter year, for most sectors,

to varying degrees.

20We use the ISIC system to define sectors. This is the same as the industrial classification used in India
up to the 4-digit level.
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Figure 3: Sector-wise percentage change in output for a one degree increase in annual aver-
ages of daily highs.
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Table 4: Temperature Effects on Log Plant Output Value

Log Output Log Output

(1) (2)
Tmax -0.0318**

(0.0144)
N2 -0.0025***

(0.00061)
N3 -0.00196***

(0.00073)
N4 -0.00243***

(0.00078)
N5 -0.00272***

(0.00085)
rainfall -0.0011 -0.0019

(0.00361) (0.00364)

Notes: ���p < 0:01; ��p < 0:05; �p < 0:1. Robust standard errors clustered at
district level provided in parentheses. All models have plant and year fixed ef-
fects. (N1; N2; N3; N4; N5) are days in {(0; 20]; (20; 25]; (25; 30]; (30; 35]; (35; 50]}
and reported coefficients are relative to N1.

These estimates suggest an inverse, non-linear relationship between temperature and plant

output, akin to temperature effects on worker productivity. To understand the role of labor

in the plant data, we write down a simple production function in log form relating the value

of output to capital and labor:

y = �(N) + !(N)k + �(N)l (7)

Here y, k, l are logged values of output, capital and labor respectively and N is a vector

of the number of days in five temperature bins. The ASI reports the net value of plant

equipment and machinery at the start of each year and we use this as our measure of capital.

Our labor measure is the number of workers. The terms !(N) and �(N) are the output

elasticities of capital and labor that depend on the temperature distribution during the year.

Temperature effects acting through all other inputs are captured by the residual �(N).
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We assume that �, ! and � are all linear in temperature bins.

Thus we have,

�(N) = �o +
5X

j=1

�jN
j

!(N) = !o +
5X

j=1

!jN
j

�(N) = �o +
5X

j=1

�jN
j

Making these substitutions in (7) we obtain

y = �o +
5X

j=1

�jN
j + !o · k +

5X
j=1

!jN
jk + �o · l +

5X
j=1

�jN
jl (8)

Temperature effects on labor and capital may also depend on the levels of these inputs.

Firms that employ a large number of workers may see higher output losses from heat stress,

or conversely invest more in climate control. To allow for such heterogeneity, we create

dummies Dq and Eq, representing the qth deciles of capital and labor respectively and then

estimate

yit =
10X

q=2

 
!oqD

q
it +

5X
j=2

!jqN
j
itD

q
it

!
+

10X
q=2

 
�oqE

q
it +

5X
j=2

�jqN
j
itE

q
it

!

+

 
5X

j=2

�jN
j
it

!
+ �Rit + �i + t + �it (9)

Here yit is the log of the value of output for plant i and year t. !jq and �jq correspond to !j,

�j in (8), estimated now for each decile q. As in all our previous models, we include fixed
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effects for each plant, �i, each year, t, and a control for rainfall Rit.

We can use estimates from (9) to identify the effect of temperature acting through capital,

labor, and the residual. Given changes ∆N j in the temperature bins, for any fixed Dq
it; E

q
it

10X
q=2

 
5X

j=2

!jq∆N
j
itD

q
it

!
(10)

and
10X

q=2

 
5X

j=2

�jq∆N
j
itE

q
it

!
(11)

are the predicted effects of temperature on output, operating through the capital and labor

channels respectively, and

5X
j=2

�j∆N
j
it (12)

is the residual effect.

This decomposition can be carried out for any vector of changes ∆N j. We would like

to choose a vector ∆N j which corresponds to a one-degree change in average maximum

temperatures, thus facilitating a comparison with the estimates from (5) as provided in

Table 4.

There is no unique way to map annual temperatures to the number of days in different

bins. Our annual panel of district level temperatures provides bin values, N j
it, and average

maximum temperatures, Tmax
it , for each district i and year t between 1998 and 2012. We

regress each N j
it on Tmax

it , controlling for district fixed effects. The coefficient on Tmax in

these regressions can be interpreted as the change in bin values for a one-degree increase in

temperature, estimated using variation observed over the years spanned by our plant level

panel.
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These estimated coefficients imply that for every one-degree rise in Tmax there are 5.89 fewer

days in Bin 1 (Tmax ≤ 20), 5.73 fewer days in Bin 2 (Tmax ∈ (20; 25]), 11.76 fewer days in

Bin 3 (Tmax ∈ (25; 30]), 1.93 more days in Bin 4 (Tmax ∈ (30; 35]) and 21.28 more days in

Bin 5 (Tmax > 35). As we might expect, the temperature distribution shifts to the right and

within a rounding error, the bin counts provided by point estimates also add up to 365.

Figure 4 shows the results of this decomposition exercise.21 We find that the negative impact

of temperature is driven almost entirely by declines in labor productivity. Output losses

attributable to capital, the residual, and their combination are statistically indistinguishable

from zero. Comparing the reduced-form results from Column 1 of Table 4 with the total

effect size in Figure 4 suggest that our choices over ∆N j map very well to a one-degree

change in average maximum temperatures.22

We also find evidence that the importance of the labor channel varies with the number

of workers. Figure 5 plots the effect of temperature on output, through changes in the

productivity of labor, for different labor deciles. Point estimates become more negative as

the number of workers increases.23

21This model contains a large number of coefficients, so its implications are best understood in graphical
form. For reference, Table A.2, Column 2 lists a subset of estimated coefficients.

22Our results are robust to more flexible specifications. Figure A.2 in the Appendix reports results with
the residual modeled using quadratics in bins.

23Note that these estimates are net of plant fixed effects and therefore do not simply represent comparisons
of plants with larger or smaller average output.
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