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Hotter years are associated with lower economic output in country-level data. We

show that the effect of temperature on labor is an important part of the explanation.

Using high-frequency micro data from selected firms in India, we find that worker

productivity on hot days declines by 2 to 4 percent per degree celsius. Sustained

heat also increases worker absenteeism. Using a national panel of manufacturing
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fully accounted for by reductions in the productivity of labor. Estimated effect

sizes are consistent with studies that rely on country GDP panels.
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1 Introduction

Recent research has uncovered a negative relation between temperature and aggregate na-

tional output, especially in developing countries. High temperatures have been shown to

reduce crop yields and also appear to lower output in non-agricultural sectors.1 Explana-

tions for this relationship include heat stress on workers and temperature-related increases

in mortality, conflict, and natural disasters.2 Establishing and quantifying the relative im-

portance of these mechanisms is crucial for identifying possibilities of adapting to a hotter

world.

In this paper, we use data from India at different levels of aggregation to quantify the

extent to which high temperatures affect output through reductions in the productivity of

labor. There are two channels through which temperature might affect workers. They may

produce less while at work and also be absent more often. We separately identify both of

these effects using data on individual workers from selected firms in three industries: cloth

weaving, garment sewing, and steel infrastructural products. We find that productivity drops

by 2 to 4 percent per degree celsius on a hot day. Hot spells increase absenteeism among

salaried workers but not those with piece rate contracts. Climate control in the workplace

mitigates contemporaneous productivity declines but not absenteeism.

After estimating these effects, we examine how temperature influences factory output using

a 15-year nationally representative panel of manufacturing plants. We find that the value

of output declines in years with more hot days and that changes in the output elasticity

of labor, in response to high temperatures, can entirely account for this effect. We also

use manufacturing sector GDP for Indian districts for the period between 1998 and 2009 to

directly estimate the impact of temperature on district output. We find that annual output

1For evidence on yields, see Mendelsohn and Dinar (1999), Auffhammer, Ramanathan, and Vincent
(2006), Schlenker and Roberts (2009) and Lobell, Schlenker, and Costa-Roberts (2011).

2Hsiang (2010) discusses heat stress, Hsiang, Burke, and Miguel (2013) identify a temperature-conflict
relationship and Burgess et al. (2011) study effects on mortality.
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declines by about 3 percent per degree celsius. This effect size closely matches predictions

using our plant data and is comparable to existing country-level estimates of the response of

contemporaneous manufacturing GDP to high temperatures (Dell, Jones, and Olken, 2012;

Burke, Hsiang, and Miguel, 2015).

Notwithstanding the magnitude of these temperature effects, adaptation through climate

control does not always occur. For example, the cloth-weaving firms we study are labor-

intensive but do not use climate control. Given the costs of electricity, value added per worker

may be too low to justify these investments. In the garment firms, value addition by workers

is greater and we see more climate control. We also use a survey of 150 diamond cutting plants

to study adaptation investments within plants and we find that air-conditioning is selectively

used in processes which are both labor intensive and critical in determining diamond quality.

Turning to our national plant panel, although we do not have direct information on the use

of climate control, we find that temperature effects on output fall slightly over time, possibly

the result of investments in adaptation.

After presenting our main results, we consider two alternatives to heat stress as an expla-

nation for the effect of temperature on labor productivity: natural disasters and conflict.

For the years covered by our plant panel, we collect data on workdays lost in all recorded

industrial disputes as well as all instances of flooding. We find that these variables have no

additional explanatory power when incorporated in our empirical models.

The paper is organized as follows. Section 2 summarizes the physiological evidence on heat

stress. Section 3 describes our data sources. Our main results are in Section 4. In Section 5

we compare effect sizes from our worker, plant, and district level data and show that these are

of similar magnitudes and consistent with country-level estimates in the literature. Section

6 examines the adoption of climate control investments within firms. Section 7 discusses

alternative explanations and the robustness of our main results. Section 8 concludes.
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2 Mechanisms

The physics of how temperature affects human beings is straightforward. Heat generated

while working must be dissipated to maintain body temperatures and avoid heat stress. The

efficiency with which this happens depends primarily on ambient temperature but also on

humidity and wind speed. If body temperatures cannot be maintained at a given activity

level, it may be necessary to reduce the intensity of work (Kjellstrom, Holmer, and Lemke,

2009; Iso, 1989). Several indices of ambient weather parameters have been used to measure

the risk of heat stress. Most widely accepted is the Wet Bulb Temperature or WBT (Parsons,

1993; Iso, 1989). The measurement of WBT requires specialized instruments but it can be

approximated by combining temperature and relative humidity. We use a formula provided

by Lemke and Kjellstrom (2012):

WBT = 0.567TA + 0.216ρ+ 3.38 (1)

where TA is air temperature in degrees celsius and ρ is water vapour pressure which is

calculated from relative humidity, RH as follows:

ρ = (RH/100)× 6.105 exp

(
17.27TA

237.7 + TA

)

Exposure to high ambient temperatures can reduce physical productivity and also affect our

willingness and ability to go to work. There have been a number of studies on temperature

and productivity. Mackworth (1946) conducted an early artefactual field experiment with

wireless telegraph operators and found that they made more mistakes at high temperatures.

Parsons (1993) and Seppanen, Fisk, and Faulkner (2003) summarize important findings in

this area. Hsiang (2010) presents a meta analysis of recent laboratory evidence which shows

that once wet bulb temperatures rise above 25 degrees celsius, task efficiency appears to fall
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by approximately 1 to 2 percent per degree. A WBT of 25 degrees at 65 percent relative

humidity is roughly equivalent to a temperature of 31 degrees celsius in dry conditions.

These temperatures are not considered unsafe from the point of view of occupational safety

and commonly occur in many developing countries.3

Controlled experiments in the laboratory or workplace provide a useful benchmark but do

not fully capture real manufacturing environments. Workers and management generally op-

erate well within physical limits and have room to increase effort in response to incentives.

The output-temperature relationship therefore depends on the physical as well as behavioral

aspects of employment such as the wage contract, particularities of production, management

techniques, and mechanization. This makes data from non-experimental settings partic-

ularly valuable. As early as 1915, Huntington exploited daily variations in temperatures

experienced by workers and students performing various tasks and found that high temper-

atures appeared to reduce output (Huntington, 1915).4 More recently, Adhvaryu, Kala, and

Nyshadham (2014) exploit variation in workplace temperatures induced by low-heat LED

lighting and conclude that worker productivity increases when temperatures are reduced.

On absenteeism, there is much less evidence. Zivin and Neidell (2014) study time allocated

between outdoor and indoor activities in response to extreme temperatures in the United

States. Their unit of analysis is the individual rather than the plant, so they do not estimate

the effect of these changes on labor supply within firms. Our data allows us to go further as

we are able to directly estimate changes in total worker absences, within firms, in response

to high temperatures.

3Temperature exposure in sectors such as mining can be high enough to create serious health hazards.
These settings have long been used for research on heat stress and occupational safety (Wyndham, 1969).

4We are grateful to an anonymous reviewer for pointing us to some of this literature.
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3 Data Sources

Our labor and output data are at three levels of aggregation: the worker or team, the

plant, and the district. For each data set, described below, we match output to measures

of temperature. In addition, we use a survey of diamond firms to study the selective use

of climate control. Official data in India is typically available for financial years, which run

from April 01 through March 31. When referencing such a financial year, we use the initial

calendar year.

3.1 Worker Data

We collected data on the output and attendance of workers from selected firms in three

industries: cloth weaving, garment sewing, and the production of large infrastructural steel

products. Our three cloth-weaving factories are located in the industrial city of Surat in the

state of Gujarat, in Western India. Our garment factories are managed by a single firm, and

located in several cities in North and South India. Our steel production data are from the

rail and structural mill of a large public sector steel plant in the town of Bhilai in Central

India. Each of these micro-data sites is part of an important manufacturing sector in the

Indian and global economy. Textiles and Garments respectively employ 12 and 7 percent of

factory workers in India and the Bhilai steel mill is the largest producer of steel rails in the

world.5

Cloth Weaving: For the three cloth-weaving factories, we gathered daily data on the

meters of cloth woven and the attendance of 147 workers employed during the financial year

starting April 2012. A worker in each of these factories operates about 6 mechanized looms

5For employment shares, see Annual Survey of Industries, 2009-10, Volume 1. A description of the steel
plant at Bhilai is available from the Steel Authority of India Ltd.
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producing woven cloth.6 Workers are paid based on the meters of cloth woven by these

looms and no payments are made for days absent. Protection from heat is limited to the

use of windows and some fans. We obtained payment slips for each day and digitized these

to generate a worker level dataset of daily output and attendance. For most types of cloth,

workers were paid 2 rupees per meter and the median daily production per worker was 125

meters.7

Garment Sewing: For garment sewing, we have data from eight factories owned by a single

firm producing garments for foreign apparel brands. Six of the factories are in the National

Capital Region (NCR) around Delhi, the other two are in Hyderabad and Chhindwara in

South and Central India respectively. In each plant, production is organized in sewing lines

of 10-20 workers with each line creating part or all of a clothing item.8 Unlike in the cloth-

weaving firms described above, these workers are paid monthly wages that do not directly

penalize workers for small variations in productivity or occasional absences.

Our productivity measure relates to the entire sewing line. The garment sector is highly

competitive and firms track worker output in sophisticated ways. In our case, the firm

used an hourly production target for each line based on the time taken to complete the

desired operations by an experienced line of ‘master craftsmen’. The actual hourly output,

controlling for the target, provides a measure of the line productivity. The target is not

revised each day so it is not sensitive to daily temperatures.

The firm management provided us with daily production from 103 sewing lines for all 730

days over two calendar years, 2012 and 2013. They also gave us daily attendance records for

6Workers are engaged in monitoring looms, adjusting alignment, restarting feeds when interrupted, and
making other necessary corrections. The cloth produced is sold in wholesale markets or to dying and printing
firms. In the Appendix, Figure A.1 provides a photograph of the production floor in one of these units.

7Since payments are strictly based on production, incentive effects on output arising from non-linearities
caused by minimum wages can be ignored (Zivin and Neidell, 2012).

8Lines are usually stable in their composition of workers, although the garment manufactured by a given
line changes based on production orders. In the Appendix, Figure A.1 provides a photograph of a typical
sewing line.
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2744 workers over the same time period. To restrict attention to regular, full-time employees,

we study absenteeism within a stable cohort of 2700 workers present for at least 600 days

over our full two-year period.

These garment factories also provide us an opportunity to study the impact of climate

control investments on productivity. During the period for which we have data, the firm

was in the process of installing cooling and dehumidifying equipment on its shopfloors. This

equipment had been installed in five of the manufacturing units in the NCR before 2012 but

the sixth unit in the NCR did not have this until 2014. Two factories in Hyderabad and

Chhindwara were also without climate control, but average temperatures in these areas are

lower than in the NCR. This phased roll-out allows us to compare temperature effects for

workers in co-located factories within the same firm, assigned to shopfloors with and without

climate control. Since we observe both absenteeism and attendance we are able to separately

estimate the effects of climate control on each of these.

Steel Production: The rail and structural mill in Bhilai is the primary supplier of rails to

the Indian Railways and also produces steel products used for large infrastructural projects.9

Rectangular blocks of steel called blooms form the basic input for all these products. They

enter a furnace and are then shaped into rails or structurals to meet ordered specifications.

When a bloom is successfully shaped, it is said to have been rolled and the number of blooms

rolled in an eight-hour shift is our output measure.

There are three shifts on most days, starting at 6 a.m., and workers are assigned to one of

three teams which rotate across these shifts. The median number of workers on the factory

floor is 66. Our production data records the team and the number of blooms rolled for

each working shift during the period 1999-2008. We observe a total of 9172 shifts over 3339

working days. In addition to the team output in each shift, we also have team-level absences

9Figure A.1 provides a photograph of the shop-floor.
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over a shorter period of 857 working days between February 2000 and March 2003.10

Unlike the weaving and garment manufacture factories, the production of rails is highly

mechanized and the mill runs continuously with breaks only for repair, maintenance, and

adjustment for different products. Workers who manipulate the machinery used to shape

rails sit in air-conditioned cabins. Others perform operations on the factory floor. This is

the most capital-intensive of our case study sites and the combination of automation and

climate control mediates the effect of outside temperatures on output.

3.2 Panel of Manufacturing Plants

We purchased secondary data from the Annual Survey of Industry (ASI) covering the finan-

cial years 1998-99 to 2012-13. The ASI is a Government of India census of large plants and a

random sample of about one-fifth of smaller plants registered under the Indian Factories Act.

Large plants are defined as those employing over 100 workers.11 The ASI provides annual

data on output, value of fixed assets, debt, cash on hand, inventories, input expenditures,

and the employment of workers and management. The format is similar to census data on

manufacturing in many other countries.12

The ASI provides plant identifiers for the period 2000-2010 but not in other years. To create a

longer panel requires matching observations across different years using time-invariant plant

characteristics. Following a procedure similar to Allcott, Collard-Wexler, and O’Connell

(2014), we create an unbalanced panel of 69643 plants over 1998 to 2012.13 We match plants

to temperature and rainfall at the level of the district.14

10These data were first used by Das et al. (2013), who provide a detailed account of the production process
in the mill.

11For regions with very little manufacturing, the ASI covers all plants irrespective of their size.
12See Berman, Somanathan, and Tan (2005) for a discussion on the measurement of variables in the ASI

and its comparability with manufacturing data in other countries.
13Section A.4 in the Appendix provides details.
14There are 529 districts with at least one plant surveyed. Figure A.1 in the Appendix shows the geographic

distribution of ASI plants and locations of our micro-data sites.
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3.3 District Panel Manufacturing GDP

The Planning Commission of India has made available data on district-level manufacturing

sector GDP over a 12 year period from 1998 to 2009.15 We use these statistics to directly

estimate the effect of temperature on economic output, aggregated at the level of districts.

Unfortunately, after 2009 this information has not been systematically compiled. Data for

some districts was either not available in this dataset, or not reliable because of changes

in boundaries over this period. Kumar and Somanathan (2009) provide a review of these

boundary modifications. Therefore our estimates are based on a sub-sample of 438 districts

with static boundaries and at least 2 non-missing observations over this period.

15These figures include output from plants in the ASI panel, with appropriate weights. They also include
estimates of unregistered manufacturing and smaller factories not covered by the ASI.

9



T
ab

le
1:

S
u
m

m
ar

y
of

W
or

ke
r

an
d

F
ir

m
D

at
a

D
at

a
S

ou
rc

e
L

o
ca

ti
o
n

U
n

it
(#

o
f

o
b

s)
D

ep
en

d
en

t
V

a
ri

a
b

le
s

T
im

e
P

er
io

d
C

li
m

a
te

C
o
n
tr

o
l

C
lo

th
W

ea
v
in

g
S

u
ra

t
W

o
rk

er
(1

4
7
)

M
et

er
s

o
f

cl
o
th

w
ov

en
,

W
o
rk

er
A

tt
en

d
a
n

ce
3
6
5

d
ay

s
N

o

G
ar

m
en

t
S

ew
in

g

N
C

R
,

H
y
d

er
ab

a
d

,
C

h
h

in
d

w
a
ra

S
ew

in
g

L
in

e
(1

0
3
)

O
p

er
a
ti

o
n

s
co

m
p

le
te

d
,

W
o
rk

er
A

tt
en

d
a
n

ce
7
3
0

d
ay

s
P

a
rt

ia
l

(7
4

li
n

es
)

S
te

el
P

ro
d

u
ct

s
B

h
il

a
i

S
h

if
t-

T
ea

m
(9

)
B

lo
o
m

s
ro

ll
ed

,
T

ea
m

A
b

se
n

ce
s

3
3
3
9

d
ay

s
(P

ro
d

u
ct

io
n

),
8
5
7

d
ay

s
(A

tt
en

d
a
n

ce
)

Y
es

A
n

n
u

al
S

u
rv

ey
of

In
d

u
st

ry
N

at
io

n
a
l

P
la

n
t

(6
9
,6

4
3
)

V
a
lu

e
o
f

o
u

tp
u

t
1
5

y
ea

rs
N

o
t

O
b

se
rv

ed

10



Working Paper

3.4 Weather Data

To identify the impacts of heat stress on output, we would like to use temperature data

from close to the workplace while also accounting for humidity. Together these allow us

to estimate the ambient wet bulb temperature, as discussed in Section 2. Ideally, if hourly

temperatures and humidity measures were also available, we could average these to estimate

the WBT experienced during working hours only. This type of information is rarely available

over long time periods and multiple locations so we approximate this ideal as best we can,

given data limitations.

Our weather data come from two sources. We use recordings from public weather stations

within the cities where our cloth-weaving and garment-sewing factories are located. We also

use a 1◦ × 1◦ gridded data product sold by the Indian Meteorological Department (IMD),

which provides daily historical temperature and rainfall measurements interpolated over the

IMD’s network of monitoring stations across the country. The first of these provides a

geographically more precise measure for locations near a weather station. The second is best

suited to averaging over space.

In the case of our worker data, we know the precise factory locations and can use public

weather stations where available. These provide daily humidity levels and allow us to esti-

mate wet bulb temperatures. Temperature highs occur during the day and are arguably the

best proxy for hot weather while at work. However, over our study period, the most prox-

imate weather stations contain a large number of missing observations for daily maximum

temperatures, especially in the NCR. Therefore we use daily mean temperatures, rather than

daily highs, to calculate a daily wet bulb temperature measure using (1).

There were no public weather stations in the proximity of the Bhilai Steel Plant over the

period for which we have data. For this plant, we rely on the IMD gridded dataset of daily

temperature and precipitation and use an inverse distance weighted average of grid points
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within 50 km of the plant to assign daily weather values.

For our annual panel of manufacturing plants we use daily maximum temperatures from the

IMD gridded datasets as well as daily precipitation. Since we do not have precise location

coordinates from the ASI, we assign to each plant the temperature and rainfall corresponding

to the district in which it is situated. These numbers are obtained by spatially averaging grid

temperatures over the geographical boundaries of each district. We describe this process in

greater detail in the Appendix.

Because we observe only annual output in our panel of manufacturing plants, we aggregate

daily temperatures thus obtained up to the annual level in two ways: A simple average of the

daily maximum temperature over the year, and a non-linear measure consisting of the number

of days in the year falling within different temperature bins. We create five bins using the

daily maximum temperature expressed in celsius, {(0, 20], (20, 25], (25, 30], (30, 35], (35, 50]}.

The vector N = (N1, N2, N3, N4, N5) specifies the number of days in each of these bins

and summarizes the temperature distribution over the year. This vector can be separately

calculated for every district and each year.

3.5 Climate control within diamond-cutting firms

In August 2014, we surveyed 150 diamond-cutting plants, randomly sampled from over 500

units formally registered with the industry association of the city of Surat (the same location

as our cloth weaving units). Each plant carries out five operations: (i) sorting and grading,

(ii) planning and marking, (iii) bruting, (iv) cutting and (v) polishing. Although these

factories are small and labor intensive, similar to the cloth-weaving plants, the value added

in production is considerable and these units commonly deploy air-conditioning in at least

some parts of the plant.
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We asked each firm about the number of workers and machines, and the use of air-conditioning

in each of the five operations. They were also asked to rate, on a scale of 1-5, the importance

of each of these processes to the quality of final output. We use these responses to study the

selective deployment of climate control.

4 Estimation and Results

4.1 Worker Productivity

Our simplest specification relates output to temperature using a piece-wise linear function

of WBT:

log(Yid) = αi + γM + γY + γW + βkWBTid ×Dk + θRid + εid. (2)

Our output measure varies across the three types of firms. For cloth weaving, Yid is the

meters of cloth produced by worker i on day d. For the steel mill, it is the number of

rectangular blooms rolled in each shift i on day d. For garment plants, it is the average over

the day of the hourly output of each sewing line. In this last case we also control for the

line-specific target output set by the firm, as described in Section 3.

We include a range of fixed effects to control for idiosyncratic worker productivity and

temporal and seasonal shocks. Fixed-effects for the ith unit are denoted by αi. A unit is an

individual worker in the cloth-weaving firms, a sewing line in garment firms, and a team-shift

for the steel mill. Recall that for the steel mill, there are 3 shifts a day, and three teams of

workers rotating across shifts, producing a total of 9 indicator variables. Output responds

in part to demand, so we also include fixed-effects for each month and year (γM , γY ). Day
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of week fixed effects (γW ) are included because some workers have a regular day off. Rid is

the relevant measure of rainfall.

We allow for non-linear effects of heat-stress by interacting the daily wet bulb temperature,

WBTid, with indicator variables Dk for four temperature ranges: {[0◦C − 20◦C), [20◦C-

25◦C), [25◦C-27◦C), [27◦C − 35◦C]}. We therefore estimate the marginal effect of a degree

change in WBT on output, within each of these intervals.16

Table 2 presents our estimates. Column 1 is for the steel mill. Columns 2 and 3 offer

a within-firm comparison of garment factories in the NCR with different levels of climate

control. Estimates from climate-controlled plants are shaded. Column 4 presents data from

garment factories located elsewhere in India. Column 5 is for cloth output from weaving

factories. Column 6 uses output in meters rather than logged meters for the cloth-weaving

firms. Since weaving workers are paid piece-rates, this coefficient can be used to compute

the expected loss in wages resulting from higher temperatures.

The most systematic declines in productivity are observed for the highest temperature bin.

Above 27 degrees, a one degree change in WBT is associated with productivity declines

ranging from 3.7 percent for sewing lines in the milder climate of South and Central India,

to about 8 percent for sewing lines and weaving workers in the hotter regions of Delhi and

Gujarat. For plants with climate control, we do not find systematic temperature effects on

output.

In addition to this piece-wise linear specification, we estimate a more flexible model of output

as a function of restricted cubic splines in WBT, with four knots at the 20th, 40th, 60th

and 80th percentiles of the temperature distribution at each location. Figure 1 shows the

predicted impact of temperature on output using this specification. Output at 25 degrees is

normalized to 100 percent. The pattern of these results is very similar to those in Table 2.

16We have chosen these breakpoints to facilitate a comparison of our estimates with others in the literature
(Hsiang, 2010).
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We see from Figure 1, Panels A and B, that the clearest evidence in support of the heat-

stress hypothesis comes from a within-firm comparison of garment sewing lines with and

without climate control. For sewing lines on shop-floors without access to climate control,

high temperatures are associated with a drop in efficiency at all locations while the NCR

factories which have climate control, show no such declines.17 In the cloth-weaving factories

(Panel C), our estimates are less precise and statistically significant only in the highest WBT

bin. For the mechanized steel mill (Panel D), the response function looks more complicated.

Even though workers sit in climate-controlled cabins, the production process involves the

heating and casting of steel which may be directly influenced by ambient temperatures. We

return to the question of interactions of capital equipment with temperature in Section 4.2.

Note that for garment lines and weaving workers, we estimate effects on output per degree

rise in wet bulb temperatures. We see from (1) that holding humidity constant, a one degree

rise in temperature corresponds to a 0.567 degree rise in wet bulb temperatures. The effects

of temperature alone, with no humidity correction, are therefore about half the estimates in

Table 2. These are comparable to estimates from other studies discussed in Section 2.

In addition to contemporaneous effects of heat exposure on output, there may also be lagged

effects. We examine these using ten-day histories of WBT. Results are in Table A.1 in the

Appendix. We find no clear evidence that temperature lags are important.

17High temperatures may affect productivity directly if they are associated with more frequent power
outages. All the factories in our dataset have a power backup, so this is unlikely to be a concern. Also,
if outages were driving our results, we should expect to see this effect in plants with and without climate
control.
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Worker Absenteeism

In the semi-tropical, low-income environments we study, sustained heat could induce fatigue

among workers and their families, resulting in time off work. We obtained detailed histories

of worker attendance for the six garment factories in the NCR and all three weaving factories.

For the steel plant, we have information on the number of daily absences in each team.

For workers in the garment and cloth-weaving sites, we estimate a linear probability model

using a specification similar to (2), with Yid now an indicator for the worker i being present

on day d. For the steel mill, we use the log of team absences as the dependent variable. The

coefficient on temperature in this case represents the percentage increase in absences within

a team rather than changes in the probability that an individual worker is absent.

As with worker productivity, we estimate models using contemporaneous WBT, and WBT

averages over the preceding ten days. Table 3 summarizes our results. In contrast with

worker productivity, absenteeism is clearly influenced by lagged temperature exposures. For

the highest WBT bin, a one degree increase in the ten-day average raises the probability of

a garment worker being absent by 10 percent and the number of team absences in the steel

mill by 2 percent. In the case of cloth-weaving workers, who are paid a piece rate, we see no

change in absenteeism.
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These initial results lead us to further explore the structure of the temperature-absenteeism

relationship. To do this, we generalize our definition of exposure and use total absences in

each of the three types of plants: garments, cloth-weaving, and steel.

We can define heat exposure on day d as:

Ed = θ0Td + θ1Td−1 + ...+ θKTd−K

With equal weights θi, this simplifies to the temperature average that we have already used.

More generally, weights could be a function of both temperature levels and lags:

Ed =
K∑
k=1

θ(T, k)Td−k (3)

This allows, for example, ten days at 30oC to result in a different response than eight days

at 28oC and two days at 38oC, even though both produce the same ten-day average.

Given an accumulated exposure level Ed, the total number of absences on day d in a popu-

lation with characteristics Xd can be modeled as:

log(Ad) = α + βEd + γXd + εd. (4)

Gasparrini (2014) shows how this class of models can be estimated using restricted cubic

splines in temperatures and lags. One spline describes exposure as a function of temperature,

while the other describes exposure as a function of the lag. We estimate this model for each

of the three industries – garments, weaving, and steel, and then use the fitted models to

predict the percentage changes in total absences under different WBT trajectories.

Figure 2 illustrates two scenarios. The left column shows the predicted change in the log of
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daily absences for a 1◦C increase in WBT over a 27◦C reference, for a duration ranging from

1 to 10 days. In the right column, we plot predicted absenteeism for different temperature

levels sustained over a ten-day period.

We find that sustained high temperatures increase absenteeism for both steel and garment

workers.18 As with the simpler linear models in Table 3, effects on daily-wage weaving workers

are not systematically different from zero. In contrast to our results on worker productivity,

we find that temperature affects absenteeism even if the work-place has climate control. This

is consistent with evidence from the United States which finds that temperature influences

time-allocation and labor-leisure trade-offs (Zivin and Neidell, 2014).

We include month fixed effects in all our empirical models and our estimates therefore rep-

resent short-run temperature impacts. We do this to isolate the role of heat stress from

other mechanisms and also because the result of long-run increases in temperature cannot

be identified separately from other seasonal factors. In the Appendix, we show that there

are seasonal changes in the availability of casual workers during high temperature months

(Figure A.2).

18Absenteeism following sustained heat exposure may occur due to illness. Strokes, fatigue, and even cases
of organ damage have been directly linked to heat stress, and continued exposure may increase overall vulner-
ability (Kovats and Hajat, 2008). Other illnesses may be influenced by heat through different mechanisms,
for example, increased breeding of pathogens and disease vectors.
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4.2 Aggregate Plant Output

Our worker data establish that high temperatures lower productivity. We now use our panel

of manufacturing plants to examine whether there are discernible temperature effects on the

value of plant output, and whether these can be attributed to a decline in the productivity

of labor.

We begin with the following reduced-form specification:

log(Yit) = αi + γt + βTit + θRit + εit. (5)

Yit is the value of output for plant i in year t and αi and γt are plant and year fixed effects.

Tit is the average daily maximum temperature for the district in which a plant is located and

Rit is the average daily rainfall. As discussed in Section 3.4, we use temperature without

humidity corrections due to data limitations.

In our second reduced-form specification, the value of annual output depends on the distribu-

tion of temperatures over the year. Specifically, we count the number of days with maximum

temperatures falling in each of five bins: {(0, 20], (20, 25], (25, 30], (30, 35], (35, 50]} and de-

note the number in bin j by N j. These bin counts sum to 365. We then estimate:

log(Yit) = αi + γt +
5∑

j=2

βjN
j
it + θRit + εit. (6)

N1 is the omitted bin in this specification and results from both (5) and (6) are reported in

Table 4.19 A 1◦C increase in the average maximum temperature results in a 3.2% decrease

in output. Coefficients from (6) are best interpreted using specific counter-factual scenarios,

19We use robust standard errors clustered at the district level to account for spatial and serial correlation.
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because changes in the temperature distribution can affect all bins. To illustrate, these

estimates imply that a shift of 10 days from the fourth to the fifth bin leads to a 0.3 percent

decline in the value of output.

To study sector-specific temperature effects, we modify (5) by interacting average temper-

ature with an indicator for each 2-digit manufacturing sector.20 Figure 3 shows sector-wise

mean estimates and confidence intervals. Output is lower in a hotter year, for most sectors,

to varying degrees.

20We use the ISIC system to define sectors. This is the same as the industrial classification used in India
up to the 4-digit level.
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Figure 3: Sector-wise percentage change in output for a one degree increase in annual aver-
ages of daily highs.
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Table 4: Temperature Effects on Log Plant Output Value

Log Output Log Output

(1) (2)
Tmax -0.0318**

(0.0144)
N2 -0.0025***

(0.00061)
N3 -0.00196***

(0.00073)
N4 -0.00243***

(0.00078)
N5 -0.00272***

(0.00085)
rainfall -0.0011 -0.0019

(0.00361) (0.00364)

Notes: ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1. Robust standard errors clustered at
district level provided in parentheses. All models have plant and year fixed ef-
fects. (N1, N2, N3, N4, N5) are days in {(0, 20], (20, 25], (25, 30], (30, 35], (35, 50]}
and reported coefficients are relative to N1.

These estimates suggest an inverse, non-linear relationship between temperature and plant

output, akin to temperature effects on worker productivity. To understand the role of labor

in the plant data, we write down a simple production function in log form relating the value

of output to capital and labor:

y = α(N) + ω(N)k + β(N)l (7)

Here y, k, l are logged values of output, capital and labor respectively and N is a vector

of the number of days in five temperature bins. The ASI reports the net value of plant

equipment and machinery at the start of each year and we use this as our measure of capital.

Our labor measure is the number of workers. The terms ω(N) and β(N) are the output

elasticities of capital and labor that depend on the temperature distribution during the year.

Temperature effects acting through all other inputs are captured by the residual α(N).
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We assume that α, ω and β are all linear in temperature bins.

Thus we have,

α(N) = αo +
5∑

j=1

αjN
j

ω(N) = ωo +
5∑

j=1

ωjN
j

β(N) = βo +
5∑

j=1

βjN
j

Making these substitutions in (7) we obtain

y = αo +
5∑

j=1

αjN
j + ωo · k +

5∑
j=1

ωjN
jk + βo · l +

5∑
j=1

βjN
jl (8)

Temperature effects on labor and capital may also depend on the levels of these inputs.

Firms that employ a large number of workers may see higher output losses from heat stress,

or conversely invest more in climate control. To allow for such heterogeneity, we create

dummies Dq and Eq, representing the qth deciles of capital and labor respectively and then

estimate

yit =
10∑
q=2

(
ωoqD

q
it +

5∑
j=2

ωjqN
j
itD

q
it

)
+

10∑
q=2

(
βoqE

q
it +

5∑
j=2

βjqN
j
itE

q
it

)

+

(
5∑

j=2

αjN
j
it

)
+ θRit + αi + γt + εit (9)

Here yit is the log of the value of output for plant i and year t. ωjq and βjq correspond to ωj,

βj in (8), estimated now for each decile q. As in all our previous models, we include fixed
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effects for each plant, αi, each year, γt, and a control for rainfall Rit.

We can use estimates from (9) to identify the effect of temperature acting through capital,

labor, and the residual. Given changes ∆N j in the temperature bins, for any fixed Dq
it, E

q
it

10∑
q=2

(
5∑

j=2

ωjq∆N
j
itD

q
it

)
(10)

and
10∑
q=2

(
5∑

j=2

βjq∆N
j
itE

q
it

)
(11)

are the predicted effects of temperature on output, operating through the capital and labor

channels respectively, and

5∑
j=2

αj∆N
j
it (12)

is the residual effect.

This decomposition can be carried out for any vector of changes ∆N j. We would like

to choose a vector ∆N j which corresponds to a one-degree change in average maximum

temperatures, thus facilitating a comparison with the estimates from (5) as provided in

Table 4.

There is no unique way to map annual temperatures to the number of days in different

bins. Our annual panel of district level temperatures provides bin values, N j
it, and average

maximum temperatures, Tmax
it , for each district i and year t between 1998 and 2012. We

regress each N j
it on Tmax

it , controlling for district fixed effects. The coefficient on Tmax in

these regressions can be interpreted as the change in bin values for a one-degree increase in

temperature, estimated using variation observed over the years spanned by our plant level

panel.
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These estimated coefficients imply that for every one-degree rise in Tmax there are 5.89 fewer

days in Bin 1 (Tmax ≤ 20), 5.73 fewer days in Bin 2 (Tmax ∈ (20, 25]), 11.76 fewer days in

Bin 3 (Tmax ∈ (25, 30]), 1.93 more days in Bin 4 (Tmax ∈ (30, 35]) and 21.28 more days in

Bin 5 (Tmax > 35). As we might expect, the temperature distribution shifts to the right and

within a rounding error, the bin counts provided by point estimates also add up to 365.

Figure 4 shows the results of this decomposition exercise.21 We find that the negative impact

of temperature is driven almost entirely by declines in labor productivity. Output losses

attributable to capital, the residual, and their combination are statistically indistinguishable

from zero. Comparing the reduced-form results from Column 1 of Table 4 with the total

effect size in Figure 4 suggest that our choices over ∆N j map very well to a one-degree

change in average maximum temperatures.22

We also find evidence that the importance of the labor channel varies with the number

of workers. Figure 5 plots the effect of temperature on output, through changes in the

productivity of labor, for different labor deciles. Point estimates become more negative as

the number of workers increases.23

21This model contains a large number of coefficients, so its implications are best understood in graphical
form. For reference, Table A.2, Column 2 lists a subset of estimated coefficients.

22Our results are robust to more flexible specifications. Figure A.2 in the Appendix reports results with
the residual modeled using quadratics in bins.

23Note that these estimates are net of plant fixed effects and therefore do not simply represent comparisons
of plants with larger or smaller average output.

29



0.025

-0.019

-0.037

-0.03-0.032 (linear model)-0.032 (linear model)-0.032 (linear model)-0.032 (linear model)

-0.06

-0.03

0.00

0.03

Capital Labor Other Total
Mechanism

E
st
im
at
e

Figure 4: Marginal effect of temperature on log output decomposed into labor, capital and a residual
as in (9). 90 percent confidence intervals with robust standard errors clustered at district level. Dot-
ted line plotted at the total reduced-form temperature effect on output from (5) and solid line is at
zero. Predictions use ∆N = (−5.89,−5.73,−11.76, 1.93, 21.28) where (N1, N2, N3, N4, N5) are days in
{(0, 20], (20, 25], (25, 30], (30, 35], (35, 50]}.
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Before concluding this section, it is worth noting that a concern with using production func-

tion regressions of this form is potential bias induced by the endogeneity of labor (Ackerberg,

Caves, and Frazer, 2006; Levinsohn and Petrin, 2003). An upward bias on the labor coeffi-

cient may become significant if plants can quickly vary the number of workers.

In the present instance, we believe this is unlikely to be a significant concern. India has a

notoriously inflexible labor market in the manufacturing sector. Indeed, in 2017 the World

Bank ranked India as low as 130 on its global ‘Ease of Doing Business’ index citing rigid

labor laws as a primary reason for the country’s poor performance. Among several other

weaknesses, the report draws attention to India’s Industrial Dispute Resolution Act (IDA)

of 1947, which requires that firms with more than 100 employees obtain explicit government

approval before dismissing any workers.

Beyond the specifics of the Indian context, in the production function estimated in (9), we

discretize labor and capital into bins. This makes both inputs relatively inflexible and our

identification is primarily based off year-to-year variations in temperature.24 A more direct

piece of evidence comes from a comparison between the total temperature effect from (9)

and the reduced-form estimate from (5), which contains no potentially endogenous regressors.

The two are almost identical.

24Some plants at the boundaries of decile cut-offs do switch bins. We estimate the conditional correlation
between temperature and the labor measure in (9) and find this to be approximately zero.
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Figure 5: Percentage change in plant output attributable to temperature induced changes in the pro-
ductivity of labor, split by deciles. Predictions use ∆N = (−5.89,−5.73,−11.76, 1.93, 21.28) where
(N1, N2, N3, N4, N5) are days in {(0, 20], (20, 25], (25, 30], (30, 35], (35, 50]}. 90 percent confidence intervals
with robust standard errors clustered at district level
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5 Aggregation to Macro-level Estimates

Our worker and plant output data both point to the importance of labor productivity in

explaining the negative effects of high temperatures. In this section, we show that our

predicted temperature effects on workers and plants are consistent with each other, and

with estimates based on district-level manufacturing output. We also compare our results

at different levels of aggregation with estimates of GDP declines in hot years, obtained from

country-level studies. These comparisons suggest that the labor productivity channel is large

enough to explain the entire temperature-output relationship observed at the country level.

First, we place an upper bound on how much of the temperature-output effect seen at the

plant level can be accounted for by the temperature-output effect estimated at the worker

level. Since the worker-level effect must be operating through the labor channel, this is a way

of bounding the labor channel. We begin by taking an average of temperature effects from

our worker data for factory sites without climate control. These are the cloth-weaving units

and a subset of the garment factories. The log of output is non-linear in WBT, so we average

over all estimates from the two highest WBT bins.25 Using (1), we note that the effect of a

1◦C increase in temperature on the log of output equals 0.567 times the corresponding effect

size per degree WBT. This gives us an estimated effect size of α̂ = -0.034. Although this

comes from a handful of sites, it is comparable to effects observed across different lab and

field settings, as summarized in Section 2.

At the plant level, we assume that the marginal worker is less productive by α̂ when the

temperature increases by 1◦C. We estimate

log(Yit) = αi + γt + βlit + θRit + εit. (13)

25These are the 6 estimates provided in rows 5-6 in columns 3-5 of Table 2. We appropriately combine
the variance of these individual estimates to produce the variance of the mean. Over 85 percent of days in
our plant sample have a maximum temperature above 25 degrees celsius, so employees would normally find
themselves coming to work in warm weather.
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Denoting the estimated labor elasticity by β̂, we note that the percentage change in output

when the temperature rises by one degree is (1 + α̂)β̂l − β̂l = α̂β̂l. Evaluated at the mean

value of l, we find that a one-degree increase in temperature corresponds to a change in plant

output of -6%.

The direct estimate of the temperature effect on output, obtained from (5) and reported

in Table 4, is -0.0318. This is smaller than our prediction based on α̂, but comparable

in that the 90 percent confidence intervals for the two estimates overlap. The difference

in point estimates is not surprising since α̂ assumes no climate control in plants. These

comparisons are illustrated in the first three bars of Figure 6, and suggests that the impact

of temperature on worker productivity is large enough to explain the entire response of plant

output to higher annual temperatures.

Above the level of the the plant, we have data on the manufacturing GDP of each district.

Using the production function for plants estimated in (9), we predict district-specific tem-

perature effects for a one degree rise in temperature by repeating the procedure used to

generate Figure 4, using the population of plants in each district. We calculate the mean of

these individual district estimates to obtain the average percentage change in district man-

ufacturing GDP for a one degree increase in temperature. Because district manufacturing

GDP includes output from smaller plants not sampled in the ASI, the accuracy of this pre-

diction depends on the extent to which the response of these smaller manufacturing units

mimics the population of factories included in the ASI. We also directly estimate the effect

of temperature on district manufacturing GDP using a panel specification analogous to (5).

The fifth and sixth bars in Figure 6 compare these predicted and estimated changes and we

see that the two are very similar.26

The last two bars provide existing estimates from two recent country-level studies (Dell,

26We are unable to study temperature effects using GDP figures for Indian states because these data are
interpolated in several years and therefore unreliable.
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Jones, and Olken, 2012; Burke, Hsiang, and Miguel, 2015). These numbers are derived

using annual average temperatures for several countries across the world, observed over long

periods of time. The earliest temperature-country observations used in both papers are from

1950. Since they come from different empirical models, the country-level numbers are not

directly comparable with our estimates. Nevertheless they provide a useful benchmark and

are statistically indistinguishable from the effect sizes we obtain at lower levels of aggregation.

To summarize, our various results, predicted and directly estimated, are remarkably similar.

From the worker up to the country level, output appears to decrease between 2 to 4 percent

per degree celsius. Plant and district level estimates are also similar to those obtained from

country-level studies. In combination with the evidence presented in Figure 4, this suggests

that reduced labor productivity could explain the temperature-output relationship at more

aggregate levels.
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Figure 6: Marginal effect of temperature on log output at different levels of production with 90 percent
confidence intervals. Legend entry BHM Country refers to the contemporaneous effect of temperature
on country output reported in Burke, Hsiang, and Miguel (2015). Legend entry DJO Industry refers to
the contemporaneous effect of temperature on industrial sector output reported in Dell, Jones, and Olken
(2012). All other estimates come from data in this paper.
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6 Adaptation and Energy Use

The full implications of the negative relationship between temperature and labor productivity

will depend on how the manufacturing sector adapts to higher temperatures. In the medium-

term, firms can mitigate the effects of temperature through climate control. Longer-run

adaptation may include automation, the relocation of plants, and changes in the composition

of manufacturing. Microdata from our garment manufacturing firm show that climate control

effectively mitigates productivity losses on hot days. However, firm decisions to invest in

climate control depend on the costs of cooling, relative to the expected output losses resulting

from heat stress. None of our three cloth-weaving plants, for example, had invested in climate

control.

In this section, we use rough estimates of energy and wage costs from these plants to do a

back-of-the-envelope cost-benefit analysis of climate control. We also present results from

a survey of 150 diamond cutting factories located in the same city of Surat as these cloth

weaving units. These are drawn randomly from all factories registered with the local dia-

mond industry association. This survey allowed us to study the selective adoption of air-

conditioning within plants. We find that this is more likely to be used in processes that are

labor-intensive and contribute most to diamond quality. Finally, we return to our national

plant panel and show that the effects of a degree-rise in temperature seem to be falling over

a 15-year period. While this does not establish adaptation, it is consistent with it.

Our three cloth-weaving firms collectively produce a median daily output of about 7200

meters of cloth and workers are paid INR 2.0 per meter, implying a median daily wage

bill of about INR 14,400. Cooling the shop-floors of all three factories would require an

air conditioning load of roughly 24 tonnes or 84 KW. At the time of our data collection,

electricity tariffs for industry in the state of Gujarat were about 5 INR per KWh. Assuming

8 hours of operation, daily air conditioning costs would be INR 3360. The costs of climate
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control would therefore be about about 23 percent of the total wage bill. Given our estimates

of a reduction in productivity by 2 to 4 per cent per degree rise in temperature, these

investments are unlikely to be profitable for firms with small price mark-ups.

The diamond cutting plants we study are located in the same city but have much higher

value-added. Each plant uses five main processes: (i) sorting and grading, (ii) planning and

marking, (iii) bruting, (iv) cutting, and (v) polishing. These vary in the amount of labor

they use, and in their contribution to overall diamond value.

We observe the presence or absence of air-conditioning in the different rooms in which these

activities take place. With 5 processes in each of the 150 firms, we have 750 observations. We

use a logit model of the likelihood of air conditioning as a function of process characteristics:

labor intensity, mechanization, and ‘importance’ in determining output quality. The first of

these variables is measured by the share of the plant’s workers engaged in the process, the

second by the share of the plant’s machines, and the third is a self-reported assessment by

management on a scale of 1 to 5. We find that diamond polishing units in Surat choose

to preferentially cool high-value and labor-intensive processes. Table A.8 in the Appendix

contains these results.

Adaptation to high temperatures at the national level depends on decisions by a heteroge-

neous population of plants of different sizes and in different sectors. While we do not directly

observe climate-control investments in our plant data, we can ask whether temperature ef-

fects decline in our plant panel over the 15-year period during which we observe plant output.

To do this, we modify (6) to include a full set of interactions of temperature bin counts with

a continuous time variable. We find that output become less responsive to temperature over

time but change is relatively slow. The negative effect on output from an additional day in

the fourth and fifth temperature bins reduces by about 6 to 8 percent per year. Column 1

of Table A.7 in the Appendix has coefficient estimates.
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7 Alternative Explanations

We have argued that heat stress causes declines in labor productivity and this can explain

reductions in manufacturing output due to high temperatures. In this section we consider

alternative explanations that have been suggested in the literature. These include an in-

creased probability of temperature-induced conflict (Hsiang, Burke, and Miguel, 2013), and

output losses owing to natural disasters (Kahn, 2005). Neither of these are likely to influence

our worker-level results because they occur on time-scales that are much longer than a day.

They could, however, mediate temperature effects on output at higher levels of aggregation

and so we assemble two additional data sets to test for their importance.

Industrial disputes are a relevant measure of conflict for manufacturing plants. Data for these

are available from an annual publication by India’s Ministry of Labour and Employment

titled ‘Statistics on Industrial Disputes, Closures, Retrenchments and Lay-Offs’. Because

all episodes are not equally severe, this handbook also reports the total number of workday

minutes lost due to industrial disputes in each state. We use the log of this number as a

proxy for the annual exposure to conflict. We use data for all recorded incidents between

2000 and 2013, except for the two years of 2001 and 2002.27

Among natural disasters in India, floods are the most widespread and are directly linked to

hurricanes and heavy rain. We tabulate every recorded instance of flooding in India from

1997 to 2013. Our data comes from the Dartmouth Flood Observatory Archive which records

flooding incidents along with affected areas, severity, duration, and damages. The dataset

is built using a combination of information from remote sensing, news stories, government

releases, and ground instruments. The Dartmouth Flood Observatory defines the magnitude

of a flood as log(Duration x Severity x Affected Area). We calculate the total magnitude of

all floods for every year within each state.

27Data for these two years, and for years before 2000, were not available.
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Both these measures are at the state level and for each year, we assign plants the values

for the state in which they are located. We then estimate modified versions of (6) and (8),

including a full set of interactions between these variables and temperature bins. We find

that floods and conflict have quantitatively small and statistically insignificant impacts on

the value of plant output. Additionally, coefficients on the labor-temperature interaction

terms remain unchanged.28 Coefficient estimates are reported in Table A.3 in the Appendix.

We conclude that these mechanisms cannot explain our results. Although severe conflicts or

natural disasters could create large negative shocks to aggregate output, such events may be

rare or absent during our study period.

We consider three other factors that may influence plant output, without necessarily changing

the productivity of labor: power outages, input price changes, and agricultural spillovers.

The large plants surveyed in the ASI are typically served by dedicated distribution lines with

scheduled load-shedding. Thus temperature-induced power outages may not be a significant

concern. Nevertheless, we formally test this hypothesis by constructing a state-level measure

of monthly outages using data from India’s Central Electricity Authority, and then regressing

logged output on temperature and outages. Comparing Table 4 with Table A.5 in the

Appendix suggests that outages have no appreciable effect on either output or the effect of

temperature.

For price changes, we gather data on plant input prices from the ASI and regress these

on temperature. We find no evidence that temperature has significant effects on prices

after controlling for year fixed effects. These results are in the Appendix in Table A.4. It

may be that most changes in prices are captured by the year fixed-effects in our models,

and any local price shocks from local temperature fluctuations are minimized by storage and

regional markets. Finally, it seems unlikely that agricultural spillovers are very large because

28Compare Table A.3, Columns (3) and (4) with Table A.2, Column (1).
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we observe negative temperature effects across sectors, even for activities with no obvious

connection to agriculture (Figure 3).

8 Conclusions

This paper has described the impact of temperature on the productivity and attendance of

workers, and the output of manufacturing plants. We find that the effect of temperature

on the value of plant output appears to be driven in large part by its effect on the output

elasticity of labor. Plant-level temperature effects also match closely with estimates from

studies examining country-level manufacturing GDP. Our objective has been to show that

non-agricultural GDP may decline at high temperatures, largely due to the physiological

effect that heat has on human beings both through heat stress, and perhaps also through

increased morbidity.

This result has fundamental implications for how we should think about the costs of climate

change going forward. The evidence we uncover on the effectiveness of climate control

and also its limited adoption, suggests that research into low cost technologies to protect

workers from ambient temperatures may have significant social value. In the long term,

there are other ways in which the industrial sector might respond to high temperatures.

These include increasing automation and shifting away from labor-intensive sectors in hot

parts of the world. Our main finding, identifying the importance of the labor channel, has

significant distributional implications. We might expect adaptation to be directed towards

more productive workers, adding high value, who may also be richer.

Although our focus throughout this paper has been on the manufacturing sector, the poten-

tial ramifications of our findings are wider. The conclusion that a physiological mechanism

is economically important implies that these effects may be significant in all labor-intensive
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activities where climate control is expensive or infeasible. Temperature impacts on worker

productivity may be pronounced and widespread in sectors such as agriculture and construc-

tion across the world, where exposure is higher and adaptation possibilities more limited.

Observed productivity losses in agriculture that have been attributed by default to plant

growth responses to high temperatures may in fact be partly driven by lower labor produc-

tivity. These possibilities are yet to be researched.
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Appendix: For Online Publication

A.1 Microdata Sites

Figure A.1 shows the shop-floors of each of our worker microdata sites. The steel mill shown

in Panel A uses smelting, casting and forging processes, all of which are capital intensive.

In the garment manufacturing factories shown in Panel B, workers are arranged in lines,

with each person repeatedly carrying out a specific task. The cloth weaving workers walk up

and down in the aisles between looms (Panel C), adjusting alignment, restarting feeds when

interrupted, and making other necessary corrections.

A.2 Lagged Effects of Temperature on Worker Output

Table A.1 presents results from a modification of (2) where we replace the contemporaneous

WBT and rainfall values, with their respective averages over the last ten days. We see no

clear relationship between how much a worker produces on a given day, and exposure in

previous days. This contrasts with our results on worker absenteeism, summarized in Table

3
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Figure A.1: Production floor images from the steel mill (Panel A), garment sewing plants (Panel B), and
cloth-weaving plants (Panel C)
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Table A.1: Worker Output Response to 10 day Temperature History

Cloth Weaving Garment Sewing

Meters Log(Efficiency)

(1) (2)

R10 0.03571 0.47483∗∗

(0.02700) (0.23990)

Q1 : WBT10 −0.02293∗∗ 0.00861
(0.00918) (0.01107)

Q2 : WBT10 −0.00486 −0.04774
(0.00996) (0.03969)

Q3 : WBT10 −0.01458 0.00683
(0.02742) (0.03869)

Q4 : WBT10 −0.04396 0.02508∗

(0.05727) (0.01361)

Notes: ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1. Robust standard errors clustered at
worker (1) or line (2) level are reported in parentheses. Estimates are based on
factories without climate control and all models have worker, month, and day-of-
week fixed effects. WBT10 denotes the ten-day wet bulb temperature average and
Qi is the ith quartile of WBT10. R10 denotes the ten-day rainfall average.
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A.3 Seasonal Patterns in Worker Absenteeism

We carried out interviews with managers of various cloth-weaving firms in Surat including,

but not restricted to, the three plants from where we obtain worker-level data. Managers

claimed that during the hottest months, daily wage workers preferred to go home to their

villages and lived off income from the National Rural Employment Guarantee Scheme, rather

than working under more strenuous conditions at the factory. Some owners reported that

they were considering the possibility of temporarily raising wages through a summer atten-

dance bonus, while others felt this would render profit margins too small to make operation

worthwhile.

Figure A.2 plots worker attendance data from the small cloth-weaving firms and the garment

sewing factories. We see seasonal reductions in the attendance of daily wage cloth weaving

workers (Panel A), concentrated in high temperature months. These patterns are absent

for the garment sewing workers who have long term employment contracts (Panel B). Al-

though many factors differentiate the two types of work settings, it is plausible that formal

employment contracts reduce the costs to taking an occasional day of leave, but significantly

increase the opportunity cost of switching occupations for extended periods of time. When

accounting for longer term responses to temperature, formal employment contracts might

therefore do better at retaining labour. This is an area that would benefit from further

research.
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Figure A.2: Worker attendance by month for daily wage workers in cloth-weaving factories (Panel A) and
salaried workers in garment plants (Panel B)

A.4 Annual Survey of Industry Data Cleaning

This section describes how our 15-year panel is constructed from the Annual Survey of

Industry datasets, made available for purchase by the Indian government.

Between 1998 and 2007, the Annual Survey of Industry is available in two forms. The first

is a panel with plant identifiers and no district identifiers, while the second is a cross section

with district identifiers but no plant identifiers. For these years we purchase both forms of

the data and merge the two to obtain a panel containing district identifiers. This merging can

be done on any suitable subset of the other observed characteristics, which remain identical.
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We use the state code, NAICS code, year of starting operations, and value of output to

complete this matching.

From 2008 until 2012 only a cross-section without district identifiers is available. At the

time of writing, the latest survey with micro-data available for sale was for financial year

2012-2013.

Since there is only one version of the dataset available, the procedure above cannot be used.

However, observations in these years can still be used to expand the panel by matching

plants on time-invariant characteristics. These include the state location, the sector 4 digit

NAICS codes and the year of starting operations. For each survey between 2008 to 2012, we

first list plants that are uniquely identified based on these variables.

We then search in each year of our panel (running from 1998-2007) for matches, based on

these three characteristics. All such matches are associated with a firm identifier. When

there is only a unique match in the panel, the corresponding observation from the 2008-2012

surveys is accordingly assigned this firm identifier and thus enters the panel. Note that

this matching process requires searching over all years in the panel because plants are not

necessarily surveyed every year.

In cases where these time-invariant characteristics do not identify a unique plant in the non-

panel years (2008-2012), or do not match to a unique plant in the panel years (1998-2007),

the corresponding observation is given a new firm identifier.

Most matches are completed this way, but a small amount of additional matches may be

obtained by using two additional variables: the start-of-year cash on hand, and the end-of-

year cash on hand. For any plant surveyed in successive years t and t+1, the end of year

balance in year t must be the same as the start of year balance in year t+1. A few additional

matches may be obtained using this fact by comparing observations in the last year of the

panel, to observations in the following year.
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After the panel is constructed we carry out a few data cleaning operations listed below.

1. We remove observations where values of output, workers, total wages, or cash on hand

are less than or equal to zero.

2. The ASI dataset also contains observations with implausibly high or low reported values

of these variables. For instance there are plants with reported annual output less than

a few dollars. We drop the top 2.5 percent and bottom 2.5 percent of values of output,

number of workers, wages, or cash on hand. This is done to transparently eliminate

these outliers. Incidentally, this process also removes a small number of manufacturing

units that report having less than 10 workers employed. Such observations represent a

discrepancy between the criterion used to select the survey sample and reported data

by plants.

3. We drop plants where the reported state or district changes over the panel duration.

4. We drop plants observed only once in the panel.

Our final sample has 69,643 manufacturing plants distributed all over India (Figure A.1) and

spanning all major sectors (Figure 3). These plants are then matched to district temperature

and precipitation measures as described in the text.

To calculate district average temperatures, we use a gridded dataset sold by the Indian

Meteorological Department. The resolution of the original temperature grid is at the 1◦

level. We first create a finer grid by linear interpolation down to 0.083◦ (5 arc-minutes), and

then average over all points falling within district polygon boundaries.
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Figure A.1: Distribution of ASI plants over Indian districts, and location of micro-data sites
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A.5 Temperature Labor Interactions

Column 1 of Table A.2 provides results from estimating (8). This is a simpler version of (9),

where we do not allow for heterogeneity in labor and capital deciles. Column 2 provides a

subset of coefficients from estimating (9).

A.6 Alternative Explanations and Robustness Checks

Floods: To create a variable corresponding to the flood exposure of a plant, we begin by

assembling a data-set of all flooding incidents in India, between 1998 and 2013, along with

the states affected by these floods. This data is obtained from the Dartmouth Flood Obser-

vatory. Because all flood incidents are not equally severe, the Dartmouth Flood Observatory

uses a standard measure of the ‘magnitude’ of the flood defined as Flood Magnitude

=LOG(Duration x Severity x Affected Area). For each year, and each state, we cal-

culate the total magnitude of all flooding. This state-level measure is then used as a proxy

for the flood exposure of all plants in a state.

Conflict: India’s Ministry of Labor and Statistics reports a variety of statistics correspond-

ing to labor disputes every year (as part of a publication entitled ‘Statistics on Industrial

Disputes, Closures, Retrenchments and Lay-Offs’). Amongst these measures is the total

number of workday minutes lost every year due to industrial disputes in each state. We use

the log of this annual, state level measure to proxy for the exposure of plants to conflict.

To test whether conflicts and/or flooding incidents may explain our results, we include these

variables in a set of regression equations as below. These correspond to our specifications in

(5), (6), (8).

yit = αi + γt + βTit + θRit + ω1Mit + ω2Cit + εit. (14)
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Table A.2: Interaction of Labor and Capital with Temperature Bins

Log Output Value

(1) (2)

N2 0.01330∗∗∗ 0.00524∗∗

(0.00395) (0.00250)
N3 0.01443∗∗∗ 0.00458∗∗

(0.00329) (0.00199)
N4 0.01611∗∗∗ 0.00470∗∗

(0.00344) (0.00200)
N5 0.01408∗∗∗ 0.00406∗∗

(0.00343) (0.00183)
l 1.02147∗∗∗

(0.15020)
k 0.42824∗∗∗

(0.08162)
l : N2 −0.00197∗∗∗

(0.00051)
l : N3 −0.00160∗∗∗

(0.00042)
l : N4 −0.00145∗∗∗

(0.00042)
l : N5 −0.00162∗∗∗

(0.00044)
k : N2 −0.00065∗∗

(0.00028)
k : N3 −0.00080∗∗∗

(0.00022)
k : N4 −0.00097∗∗∗

(0.00023)
k : N5 −0.00081∗∗∗

(0.00024)
E5 2.72543∗∗∗

(0.54153)
D5 1.39263∗∗

(0.65202)
E5 : N2 −0.00605∗∗∗

(0.00221)
E5 : N3 −0.00525∗∗∗

(0.00153)
E5 : N4 −0.00562∗∗∗

(0.00156)
E5 : N5 −0.00525∗∗∗

(0.00146)
D5 : N2 −0.00382

(0.00247)
D5 : N3 −0.00266

(0.00185)
D5 : N4 −0.00294∗

(0.00178)
D5 : N5 −0.00274

(0.00179)

Notes: ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1. Column (1) reports results from Equation (8) and Column (2) from
Equation (9). Robust standard errors clustered at district level are reported in parentheses. All models include
plant and year fixed effects. l and k denote the log of the number of plant workers and the log of the capital
measure. D5 and E5 are dummies for the 5th quantile of capital and labor. The full model corresponding to
Column (2) contains coefficients corresponding to all quantiles of labor and capital. (N1, N2, N3, N4, N5) are days
in {(0, 20], (20, 25], (25, 30], (30, 35], (35, 50]} and all coefficients are relative to N1.
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yit = αi + γt +
5∑

j=2

βjN
j
it + θRit + ω1Mit + ω2Cit + εit. (15)

yit = αi + γt +
5∑

j=2

αjN
j
it + ωo · k +

5∑
j=2

ωjN
j
itk + βo · l +

5∑
j=2

βjN
j
itl +

5∑
j=2

γjN
j
it ·Mit (16)

yit = αi + γt +
5∑

j=2

αjN
j
it + ωo · k +

5∑
j=2

ωjN
j
itk + βo · l +

5∑
j=2

βjN
j
itl +

5∑
j=2

γjN
j
it · Cit (17)

where Mit is the total magnitude of flooding in year t for the state in which plant i is located.

Cit is the log of total minutes lost to industrial disputes in year t for the state in which plant

i is located. All other variables are as defined in (5), (6) and (8).

The estimates from these models are provided in Table A.3 below.
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Table A.3: Temperature Effects on Log Plant Output Controlling for Disputes and Floods

Log Output Value

(1) (2) (3) (4)

rainfall −0.00086 −0.00194 −0.00124 −0.00074
(0.00374) (0.00364) (0.00355) (0.00310)

Tmax −0.03184∗∗

(0.01447)
N2 −0.00251∗∗∗ 0.01337∗∗∗ 0.01384∗∗∗

(0.00061) (0.00394) (0.00402)
N3 −0.00196∗∗∗ 0.01443∗∗∗ 0.01460∗∗∗

(0.00073) (0.00330) (0.00335)
N4 −0.00243∗∗∗ 0.01609∗∗∗ 0.01651∗∗∗

(0.00078) (0.00345) (0.00342)
N5 −0.00272∗∗∗ 0.01411∗∗∗ 0.01412∗∗∗

(0.00085) (0.00345) (0.00348)
l 1.02172∗∗∗ 1.02304∗∗∗

(0.15029) (0.15018)
N2 : l −0.00196∗∗∗ −0.00197∗∗∗

(0.00051) (0.00051)
N3 : l −0.00160∗∗∗ −0.00160∗∗∗

(0.00042) (0.00042)
N4 : l −0.00145∗∗∗ −0.00145∗∗∗

(0.00042) (0.00042)
N5 : l −0.00162∗∗∗ −0.00163∗∗∗

(0.00044) (0.00044)
Floods −0.00022 −0.00027 0.00521

(0.00070) (0.00072) (0.01796)
Disputes 0.00187 0.00192 0.01066

(0.00304) (0.00299) (0.05614)
N2:Floods −0.00001

(0.00007)
N3:Floods −0.00002

(0.00005)
N4:Floods −0.00001

(0.00005)
N5:Floods −0.00002

(0.00005)
N2:Disputes −0.00005

(0.00021)
N3:Disputes −0.00001

(0.00015)
N4:Disputes −0.00004

(0.00015)
N5:Disputes 0.00000

(0.00015)

Notes: ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1. Robust standard errors clustered at district level reported in paren-
theses. Models have plant and year fixed effects. l is the log of the number of plant workers, Floods denotes the
total magnitude of flood exposure and Disputes is time lost due to industrial conflict expressed in units of ten
(8hr) workdays. (N1, N2, N3, N4, N5) are days in {(0, 20], (20, 25], (25, 30], (30, 35], (35, 50]} and all coefficients are
relative to N1. Capital-temperature interaction coefficients not shown for brevity
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A.7 Price Shocks

If higher temperatures induce changes in the prices of input materials, plant output value

may also change. To check whether this may influence our reduced-form results, we first

create a variable containing the price of the primary input for each plant. The primary

input in the ASI is the input with the largest total value consumed.

Next, for the subset of plants where the listed primary input does not change, we regress

price on linear and binned specifications of temperature as below:

Pit = αi + γt + βTit + θRit + εit. (18)

Pit = αi + γt +
5∑

j=2

βjN
j
it + θRit + εit. (19)

Here the dependent variable is the input price for plant i in year t. As before αi, γt, are

plant and year fixed effects. Tit and Rit are the average of daily highs and rainfall over year

t for plant i. N j
it are the number of days in the temperature bin j, as defined in the main

text.

Table A.4 reports results from both specifications. We find no evidence that temperature

influences the price of plant input materials. This does not imply that long-term changes in

the number of hot days in a year will leave prices unaffected, only that this factor cannot

explain the results in this paper. Changes in relative prices in the economy over the long

term will result from general equilibrium effects that lie outside the scope of this paper.
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Table A.4: Temperature Effects on Price

Price of Primary Input

(1) (2)

rainfall −72.47 −23.15
(903.73) (874.73)

Tmax −813.44
(1759.91)

N2 92.04
(106.38)

N3 106.20
(88.83)

N4 97.73
(102.36)

N5 71.36
(115.72)

Notes: ∗∗∗p < 0.01; ∗∗p < 0.05 ∗p < 0.1. Robust standard errors clustered
at district level are reported in parentheses. All models have plant and year
fixed effects. Prices are in Indian Rupees, (N1, N2, N3, N4, N5) are days in
{(0, 20], (20, 25], (25, 30], (30, 35], (35, 50]}, and all coefficients are relative to N1.

A.8 Power Outages

We do not have a direct measure of electricity supply at the plant level. However large

plants are generally served by dedicated high voltage (33kV) grid feeders with fixed supply

schedules. When load shedding is unavoidable, these feeders are generally shed last, so that

only large grid disruptions will percolate down to plants served by high voltage lines. This

does not imply that large plants receive 24x7 supply, only that unscheduled, temperature-

dependent outages may be relatively rare. It is this type of outage that is of relevance in our

context.
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Notwithstanding these facts, we also investigate the possible impacts of outages by construct-

ing an annual, state-level panel of the difference between average monthly electricity supply

and an imputed measure of average monthly electricity demand, as calculated by the Central

Electricity Authority of India. This is commonly used as a measure of supply shortfalls and

the required data is made publicly available by India’s Central Electricity Authority in an

annual publication called the Load Generation Balance Report.

Introducing this outage proxy into (5) and (6) does not change our results. Compare coeffi-

cients in Table A.5 with those in Table 4.
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Table A.5: Temperature Effects on Log Plant Output

Log Output Value

(1) (2)

rainfall −0.00066 −0.00202
(0.00381) (0.00357)

Tmax −0.02986
(0.01898)

N2 −0.00279∗∗∗

(0.00077)

N3 −0.00199∗∗

(0.00089)

N4 −0.00251∗∗∗

(0.00093)

N5 −0.00268∗∗

(0.00108)

outages −0.00003 −0.00003
(0.00004) (0.00004)

Notes: ∗∗∗p < 0.01; ∗∗p < 0.05 ∗∗p < 0.1. Robust standard errors clustered at
district level are reported in parentheses. All models have plant and year fixed
effects. (N1, N2, N3, N4, N5) are days in {(0, 20], (20, 25], (25, 30], (30, 35], (35, 50]}
and coefficients are relative to N1.
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A.9 Leads in Temperature Variables

As a robustness check, we also estimate (5) and (6) by replacing averaged or binned annual

temperatures, with one year leads of average daily highs or the vector of days in temperature

bins. Most coefficients become statistically insignificant with smaller point estimates, and

standard errors are significantly higher. This is consistent with leads having little explanatory

power, except through serial correlation with the contemporaneous temperature variables.

Table A.6 reports results.
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Table A.6: Log Plant Output Value Regressed on Leads in Annual Temperatures

Log Output Log Output

(1) (2)
Tmax (lead) -0.0243

(0.0168)
N2 (lead) -0.0015

(0.0012)
N3 (lead) -0.0021

(0.0014)
N4 (lead) -0.0025*

(0.0014)
N5 (lead) -0.0028*

(0.0015)
rainfall 0.0072 0.0055

(0.0044) (0.0041)

Notes: ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1. Robust standard errors clustered at
district level provided in parentheses. All models have plant and year fixed ef-
fects. (N1, N2, N3, N4, N5) are days in {(0, 20], (20, 25], (25, 30], (30, 35], (35, 50]}
and reported coefficients are relative to N1.

A.10 Adaptation Evidence from ASI Plant Panel

Table A.7 examines how the effect of temperature on plant output changes over time by

running the following regression:

yit = αi + γt +
5∑

j=2

βjN
j
it × t+ θRit + εit. (20)

Where yit is the logged value of output for plant i in year t and αi and γt are plant and

year fixed effects. N j
it are the number of days in our different temperature bins, omitting

the lowest bin. Rit is the average rainfall for the district in which a plant is located. We

find evidence of decreasing temperature sensitivity over time, as shown in Column 1 of Table

A.7.

We also examine how the temperature-output relationship varies across firms with electric-
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ity consumption that is above or below the median. To do so, we modify (6) by interacting

temperature bins with a dummy variable that takes the value 1 when plant electricity con-

sumption is above the median. We examine heterogeneity by electricity use because climate

control is an electricity intensive technology. Our results are provided in Column 2 of Table

A.7, showing that the output of plants with high electricity use is less sensitive to temper-

ature. Note that these results are net of plant fixed effects and therefore do not simply

represent a comparison of larger and smaller plants.
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Table A.7: Temperature Sensitivity of Output with Electricity Consumption and Time

Log Output Value

(1) (2)

rainfall −0.00198 −0.00190
(0.00352) (0.00343)

N2 −0.00449∗∗∗ −0.00734∗∗∗

(0.00150) (0.00125)

N3 −0.00490∗∗∗ −0.00523∗∗∗

(0.00120) (0.00107)

N4 −0.00442∗∗∗ −0.00575∗∗∗

(0.00122) (0.00110)

N5 −0.00520∗∗∗ −0.00572∗∗∗

(0.00128) (0.00116)

N2:time 0.00030∗

(0.00017)

N3:time 0.00044∗∗∗

(0.00012)

N4:time 0.00031∗∗

(0.00012)

N5:time 0.00040∗∗∗

(0.00014)

De −2.74975∗∗∗

(0.52839)

N2 : De 0.00996∗∗∗

(0.00188)

N3 : De 0.00677∗∗∗

(0.00142)

N4 : De 0.00699∗∗∗

(0.00144)

N5 : De 0.00661∗∗∗

(0.00149)

Notes: ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1. Robust standard errors clustered at district level are
reported in parentheses. All models have plant and year fixed effects. De is an indicator that
takes the value 1 when electricity consumption is above the median. (N1, N2, N3, N4, N5) are
days in {(0, 20], (20, 25], (25, 30], (30, 35], (35, 50]}and all coefficients are relative to N1.
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A.11 Adaptation in Diamond Firms

This section presents results using data from a survey of 150 diamond cutting factories

located in the city of Surat. These factories were drawn randomly from a list of all plants

registered with the local diamond industry association.

We estimate a logit model using data from 750 processes in these 150 firms to describe the

probability of using air-conditioning within a process as a function of (i) labor-intensity (ii)

mechanization and (iii) importance in determining final diamond quality. The first of these

variables is measured by the share of the firm’s workers engaged in the process, the second

by the share of the plant’s machines used, and the third is a self-reported assessment by

management on a scale of 1 to 5.

We estimate models with and without plant fixed effects. In the latter case we additionally

include the number of workers (a proxy for size) as a control variable. Specifically the

probability model with fixed effects is as follows

PAC
ip =

1

1 + exp(βo + β1Dip + β2mip + β3wip + FEi)
(21)

Here PAC
ip is the probability that plant i has air conditioning installed in process p. Dip is a

dummy variable that takes the value 1 when a process is rated as highly important (ranking

of 5 on a scale from 1 to 5) and 0 otherwise. mip is the share of the machines in plant i

deployed in process p. wip is the share of the workers in plant i deployed in process p.

Alternatively the model can be estimated without fixed effects but including a measure of

size (the total number of workers). This significantly simplifies the interpretation of the logit

probability model.
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PAC
ip =

1

1 + exp(βo + β1Dip + β2mip + β3wip + βfsi)
(22)

Here sip is the size of plant i measured by the total number of workers employed.

Table A.8 summarizes our results. We find that diamond polishing units in Surat choose

to preferentially cool high value and labor-intensive processes, consistent with decisions to

optimally allocate air conditioning. Larger firms are more likely to use air conditioning than

small plants.

Table A.8: Air Conditioning Investments in Diamond Firms

AC Presence Indicator

(1) (2)

Workers 0.00135∗∗

(0.00064)

Importance 3.07407∗∗∗ 1.27207∗∗∗

(0.41638) (0.20769)

Worker Share 15.88670∗∗∗ 7.66071∗∗∗

(2.43892) (1.47864)

Machine Share −17.53345∗∗∗ −9.48015∗∗∗

(1.91772) (1.08042)

Notes: ∗∗∗p < 0.01; ∗∗p < 0.05; ∗∗p < 0.1. Model 1 is estimated with firm fixed
effects and Model 2 has no fixed effects. Workers denotes the number of workers,
Worker Share is the fraction of total workers employed in a process, Machine Share
is the fraction of total machines in a process and Importance is the manager rating
on a scale of 1 (not important) to 5 (very important), describing how much a process
contributes to final diamond quality.
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A.12 Decomposition of Temperature Effects on Plant Output

Figure A.2 is a modification of Figure 4 in the main text. Here we model the residual term

in (9) using quadratics in temperature bins.
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Figure A.2: Marginal effect of temperature on output decomposed into labor, capital and a residual
modeled by quadratics in temperature bins. 90 percent confidence intervals with robust standard errors
clustered at district level. Dotted line plotted at the total temperature effect on output from (5) and solid
line is at zero. Predictions use ∆N = (−5.89,−5.73,−11.76, 1.93, 21.28) where (N1, N2, N3, N4, N5) are
days in {(0, 20], (20, 25], (25, 30], (30, 35], (35, 50]}.
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